Lepagean 2-forms in higher order Hamiltonian mechanics. II. Inverse problem

Olga Krupková

Archivum Mathematicum (1987)

  • Volume: 023, Issue: 3, page 155-170
  • ISSN: 0044-8753

How to cite

top

Krupková, Olga. "Lepagean 2-forms in higher order Hamiltonian mechanics. II. Inverse problem." Archivum Mathematicum 023.3 (1987): 155-170. <http://eudml.org/doc/18219>.

@article{Krupková1987,
author = {Krupková, Olga},
journal = {Archivum Mathematicum},
keywords = {Hamilton equations; regularity; variationality conditions; Lepagean 2- forms; Hamiltonian mechanics; inverse problem; variational integrating factors},
language = {eng},
number = {3},
pages = {155-170},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lepagean 2-forms in higher order Hamiltonian mechanics. II. Inverse problem},
url = {http://eudml.org/doc/18219},
volume = {023},
year = {1987},
}

TY - JOUR
AU - Krupková, Olga
TI - Lepagean 2-forms in higher order Hamiltonian mechanics. II. Inverse problem
JO - Archivum Mathematicum
PY - 1987
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 023
IS - 3
SP - 155
EP - 170
LA - eng
KW - Hamilton equations; regularity; variationality conditions; Lepagean 2- forms; Hamiltonian mechanics; inverse problem; variational integrating factors
UR - http://eudml.org/doc/18219
ER -

References

top
  1. E. Engels W. Sarlet, General solution and invariants for a class of lagrangian equations governed by a velocity-dependent potential energy, J. Phys. A: Math., Nucl. Gen. 6 (1973), 818-825. (1973) MR0418700
  2. P. Havas, The range of application of the Lagrange formalism I, Nuovo Cimento (Suppl.) 3 (1957), 363-388. (1957) Zbl0077.37202MR0090972
  3. D. Kгupka A. E. Sattaгov, The inverse problem of the calculus of variations for Finsler structures, Math. Slovaca (35) 3 (1985), 217-222. (1985) MR0808354
  4. O. Kгupková, Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity, Arch. Math. (Bгno) 2 (1986), 97-120. (1986) MR0868124
  5. J. Novotný, On the inverse variational problem in the classical mechanics, Pгoc. Conf. Diff. Geom. Appl. 1980, Charles University of Prague (1981), 189-195. (1980) MR0663225
  6. R. M. Santilli, Foundations of Theoretical Physics I., The Inverse Problem in Newtonian Mechanics, Springeг Verlag, New Yoгk 1978. (1978) Zbl0401.70015MR0514210
  7. W. Saгlet, On the transition between second-order and first-order systems within the context of the inverse problem of Newtonian mechanics, Hadronic J. 2 (1979), 407-432. (1979) MR0529840
  8. W. Sarlet, The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics, J. Phys. A: Math. Gen. 15 (1982), 1503-1517. (1982) Zbl0537.70018MR0656831
  9. O. Štěpánková, The local inverse problem of the calculus of variations in higher order Hamiltonian mechanics, Geometгical Methods in Physics, Pгoc. Conf. Diff. Geom. Appl., Sept. 1983, J. E. Puгkyně University, Bгno (1984), 275-287. (1983) Zbl0557.58010MR0793216
  10. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies with an Introduction to the problem of Three Bodies, 2-nd Ed. Cambгidge, the Univeгsity Pгess, 1917. (1917) MR0992404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.