On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order

Ján Andres

Časopis pro pěstování matematiky (1986)

  • Volume: 111, Issue: 3, page 225-229
  • ISSN: 0528-2195

How to cite

top

Andres, Ján. "On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order." Časopis pro pěstování matematiky 111.3 (1986): 225-229. <http://eudml.org/doc/18987>.

@article{Andres1986,
author = {Andres, Ján},
journal = {Časopis pro pěstování matematiky},
keywords = {third order differential equation; Lyapunov's second method; asymptotic stable solution; isolated zero points},
language = {eng},
number = {3},
pages = {225-229},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order},
url = {http://eudml.org/doc/18987},
volume = {111},
year = {1986},
}

TY - JOUR
AU - Andres, Ján
TI - On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order
JO - Časopis pro pěstování matematiky
PY - 1986
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 111
IS - 3
SP - 225
EP - 229
LA - eng
KW - third order differential equation; Lyapunov's second method; asymptotic stable solution; isolated zero points
UR - http://eudml.org/doc/18987
ER -

References

top
  1. E. A. Barbashin, Liapunov Functions, (in Russian). Nauka, Moscow 1970. (1970) 
  2. V. Haas, A stability result for a third order nonlinear differential equation, J. London Math. Soc. 40 (1965), 31-33. (1965) Zbl0126.30401MR0171057

Citations in EuDML Documents

top
  1. Ján Andres, Asymptotic properties of solutions of a certain third-order differential equation with an oscillatory restoring term
  2. Ján Andres, Boundedness results of solutions to the equation x ′′′ + a x ′′ + g ( x ) x + h ( x ) = p ( t ) without the hypothesis h ( x ) sgn x 0 f o r | x | > R .
  3. Ján Andres, Boundedness results of solutions to the equation x ′′′ + a x ′′ + g ( x ) x + h ( x ) = p ( t ) without the hypothesis h ( x ) sgn x 0 for | x | > R .

NotesEmbed ?

top

You must be logged in to post comments.