Boundedness results of solutions to the equation without the hypothesis .
- Volume: 80, Issue: 7-12, page 533-539
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topAndres, Ján. "Boundedness results of solutions to the equation $x^{\prime\prime\prime} + ax^{\prime\prime}+ g (x) x^{\prime}+ h (x) = p (t)$ without the hypothesis $h (x) \, \text{sgn} x \ge 0$$for |x| > R$.." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 80.7-12 (1986): 533-539. <http://eudml.org/doc/287214>.
@article{Andres1986,
author = {Andres, Ján},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Lyapunov functions; bounded solution},
language = {eng},
month = {12},
number = {7-12},
pages = {533-539},
publisher = {Accademia Nazionale dei Lincei},
title = {Boundedness results of solutions to the equation $x^\{\prime\prime\prime\} + ax^\{\prime\prime\}+ g (x) x^\{\prime\}+ h (x) = p (t)$ without the hypothesis $h (x) \, \text\{sgn\} x \ge 0$$for |x| > R$.},
url = {http://eudml.org/doc/287214},
volume = {80},
year = {1986},
}
TY - JOUR
AU - Andres, Ján
TI - Boundedness results of solutions to the equation $x^{\prime\prime\prime} + ax^{\prime\prime}+ g (x) x^{\prime}+ h (x) = p (t)$ without the hypothesis $h (x) \, \text{sgn} x \ge 0$$for |x| > R$.
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1986/12//
PB - Accademia Nazionale dei Lincei
VL - 80
IS - 7-12
SP - 533
EP - 539
LA - eng
KW - Lyapunov functions; bounded solution
UR - http://eudml.org/doc/287214
ER -
References
top- REISSIG, R., SANSONE, G. and CONTI, R. (1969) - Nichtlineare Dijferentialgleichungen höherer Ordnung. Cremonese, Roma. Zbl0172.10801MR241749
- EZEILO, J.O.C. and TEJUMOLA, H.O. (1973) - Boundedness theorems for certain third order equations. «Atti Accad. Naz. Lincei», (8), 55, 194-201. Zbl0295.34022MR364784
- EZEILO, J.O.C. (1968) - On the boundedness of solutions of the equation . «Ann. Mat. Pura Appl.», 4, 80, 281-299. Zbl0211.40102MR241753
- SWICK, K.E. (1974) - Boundedness and stability for nonlinear third order differential equations. «Atti Accad. Naz. Lincei», (8), 56, 859-865. Zbl0326.34062MR399597
- SWICK, K.E. (1970) - Asymptotic behavior of the solutions of certain third order differential equations. «SIAM J. Appl. Math.», 19, 96-102. Zbl0212.11403MR267212
- VORÁČEK, J. (1966) - Einige Bemerkungen über eine nichtlineare Differentialgleichungen dritten Ordnung. «Arch. Math.», 2, 19-26. Zbl0244.34023MR199501
- VORÁČEK, J. (1970) - Über eine nichtlineare Differentialgleichung dritter Ordnung. «Czech. Math. J.», 20, 207-219. Zbl0201.11602MR259237
- ANDRES, J. (1986) - Boundedness of solutions of the third order differential equation with the oscillatory restoring and forcing terms. «Czech. Math. J.», 1, 1-6. Zbl0608.34039MR822859
- ANDRES, J. (1986) - On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order. «Čas. pěst. mat.», 3, 225-229. Zbl0609.34058MR853786
- REISSIG, R. (1973/74) - Phasenraum-Methoden zum Studium nichtlinearerer Dijferentialgleichungen. «Jber. Deutch. Math.-Verein», 75 (3), 1, 130-139. Zbl0287.34053MR477300
- KRASNOSEL'SKI, M.A. (1966) - Translation operator along the trajectories of differential equations. «Nauka, Moscow» (in Russian).
- YOSHIZAWA, T. (1966) - Stability theory by Liapunov's second method. «Math. Soc. Japan», Tokyo. Zbl0144.10802MR208086
- ANDRES, J. - Dichotomies for solutions of a certain third order nonlinear differential equation which is not from the class . To appear in «Fasc. Math.». Zbl0645.34048MR942320
- ANDERSON, L.R. (1970) - Integral manifolds of a class of third order autonomous differential equations. «J. Diff. Eqs.», 7, 274-286. Zbl0215.15005MR254319
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.