On the heat potential of the double distribution
Časopis pro pěstování matematiky (1973)
- Volume: 098, Issue: 2, page 181-198
- ISSN: 0528-2195
Access Full Article
topHow to cite
topVeselý, Jiří. "On the heat potential of the double distribution." Časopis pro pěstování matematiky 098.2 (1973): 181-198. <http://eudml.org/doc/19301>.
@article{Veselý1973,
author = {Veselý, Jiří},
journal = {Časopis pro pěstování matematiky},
language = {eng},
number = {2},
pages = {181-198},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {On the heat potential of the double distribution},
url = {http://eudml.org/doc/19301},
volume = {098},
year = {1973},
}
TY - JOUR
AU - Veselý, Jiří
TI - On the heat potential of the double distribution
JO - Časopis pro pěstování matematiky
PY - 1973
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 098
IS - 2
SP - 181
EP - 198
LA - eng
UR - http://eudml.org/doc/19301
ER -
References
top- Ю. Д. Бураго, B. Г. Maзья, Некоторые вопросы теории потенциала и теории функций для областей с нерегулярными границами, Ленинград 1967. (1967)
- M. Dont, Non-tangential limits of the double layer potential, Čas. pro pěst. mat. 97 (1972), 231-258. (1972) MR0444975
- A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, INC, 1964 (Russian translation - Moscow, 1968). (1964) Zbl0144.34903MR0181836
- J. Král, Flows of heat and the Fourier problem, Czech. Mat. J. 20 (95), 1970, 556-598. (1970) MR0271554
- J. Král, The Fredholm method in potential theory, TAMS, I25 (1966), 511 - 547. (1966) MR0209503
- J. Veselý, Angular limits of double layer potentials, (Czech, English Summary), Čas. pro pěst. mat. 95 (1970), 399-401. (1970) MR0382676
Citations in EuDML Documents
top- Jiří Veselý, Some properties of a generalized heat potential (Preliminary communication)
- Jiří Veselý, On a generalized heat potential
- Miroslav Dont, Flows of heat and time moving boundary
- Miroslav Dont, Third boundary value problem for the heat equation. I.
- Miroslav Dont, Third boundary value problem for the heat equation. II.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.