Programmes linéaires d'appui d'un programme convexe, application aux conditions d'optimalité et à la dualité

Cl. Raffin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1968)

  • Volume: 2, Issue: R3, page 27-60
  • ISSN: 0764-583X

How to cite

top

Raffin, Cl.. "Programmes linéaires d'appui d'un programme convexe, application aux conditions d'optimalité et à la dualité." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 2.R3 (1968): 27-60. <http://eudml.org/doc/193110>.

@article{Raffin1968,
author = {Raffin, Cl.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {operations research},
language = {fre},
number = {R3},
pages = {27-60},
publisher = {Dunod},
title = {Programmes linéaires d'appui d'un programme convexe, application aux conditions d'optimalité et à la dualité},
url = {http://eudml.org/doc/193110},
volume = {2},
year = {1968},
}

TY - JOUR
AU - Raffin, Cl.
TI - Programmes linéaires d'appui d'un programme convexe, application aux conditions d'optimalité et à la dualité
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1968
PB - Dunod
VL - 2
IS - R3
SP - 27
EP - 60
LA - fre
KW - operations research
UR - http://eudml.org/doc/193110
ER -

References

top
  1. [1] ABADIE J., On the Kuhn-Tucker theorem, Non-linear programming. A course-North Holland Publishing Compagny, 1967. Zbl0183.22803MR218116
  2. [2] ARROW K. J., HURWICZ L. et UZAWA H., Studies in linear and non-linear programming Stanford University Press, California, 1958. Zbl0091.16002MR108399
  3. [3] BERGE C. et GHOUILA-HOURI A., Programmes, jeux et réseaux de transport, Dunod, 1962. Zbl0111.17302MR192912
  4. [4] BORGET G., Sur l'application d'une méthode de dualité à un problème d'optimisation dynamique à critère quadratique. Thèse de Docteur-Ingénieur Faculté des Sciences,de Caen, 1966. 
  5. [5] BOURBAKI N., Espaces vectoriels topologiques, Hermann, Paris, 1955. Zbl0066.35301
  6. [6] CHARNES A., COOPER W. W., KORTANEK K., A duality theorem for convex programs for convex constraints, Bull. Amer, Math. Soc. 63, 1962, 605-608. Zbl0131.36502MR143654
  7. [7] DENNIS J. B., Mathematical Programming and Electrical Networks, Technology Press and John Wiley and Sons, New York, 1959. MR108400
  8. [8] DORN W. S., A duality theorem for convex programs. IBM J. of Res. Dev. 4, 1960, 407-413. Zbl0095.14503MR114672
  9. [9] DUFFIN R. J., Infinite programs. Linear inequalities and related Systems (edited by Kuhn and Tucker), 1956, 158-170. Zbl0072.37603MR87573
  10. [10] FAN K., A generalization of the Alaoglu-Bourbaki theorem and its applications,Math. Zeithschr, 88, 1965, 48-60. Zbl0135.34402MR178326
  11. [11] HANSON M. A., A duality theorem in non-linear programming with non linear constraints. Australian J. Statistics, 3, 1961, 64-72. Zbl0102.15601MR138508
  12. [12] HUARD P., Mathématique des programmes économiques, Monographies de R. O, Dunod, 1961, 13-18. Zbl0204.19505
  13. [13] KARLIN S., Mathematical methods and theory in games, programming and economies, Addison-Wesley Publishing Compagny, Inc., 1959, vol. I. MR1160778
  14. [14] KUHN H. W. and TUCKER A. W., Non-linear programming. Proceedings of the second Berkeley Symposium, University of California Press, 1951, 481-492. Zbl0044.05903MR47303
  15. [15] MANGASARIAN O. L., Duality in non-Linear programming. Quart, Appl. Math., vol. XX, 1962, 300-302. Zbl0113.35703
  16. [16] MANGASARIAN O. L. and PONSTEIN J., Minimax and duality in non-linear programming, J. of Math. An. and Appl., 11, 1965, 504-518. Zbl0131.18601MR183538
  17. [17] MOREAU J. J., Fonctionnelles convexes. Séminaire sur les équations aux dérivée partielles, Collège de France, 1966-1967. MR390443
  18. [18] PALLU DE LA BARRIERE R., Duality in dynamic programming. lst International Conference on programming and control, Colorado Springs, SIAM Journal of Control vol. 4, n° 1, Feb. 1966. Zbl0158.10101
  19. [19] PSENICNYJ B. N., Programmation convexe dans un espace normé, Kibernetika (en russe), 1965, 5, 46-54. 
  20. [20] RAFFIN Cl., a) Programmation mathématique et dualité. Séminaire de Statistique de l'Université de Poitiers (mars 1966), publié dans les Cahiers du B.U.R.O. (I.S.U.P.), cahier n° 10, 1-22. 
  21. RAFFIN Cl., b) Comptes rendus de l'Académie des Sciences de Paris, 265, A, 1967, p. 177 et 265, A, 1967, p. 193. Zbl0157.49801
  22. RAFFIN Cl., c) Comptes rendus de l'Académie des Sciences de Paris, 266, A, 1968, p. 766 et 266, A, 1968, p. 839. 
  23. [21] ROCKAFELLAR R. T., a) Characterization of the subdifferentials of convex functions. Pacific J. of Math., vol. XVII, 1966, 497-510. Zbl0145.15901MR193549
  24. ROCKAFELLAR R. T.. b) Extension of Fenchel's duality theorem for convex functions, Duke Math. Journal 33-1, March 1966, 81-89. Zbl0138.09301MR187062
  25. [22] STOER J., Duality in non-linear programming and the min-max theorem, Num. Math., 5, 1963, 371-379. Zbl0152.38104
  26. [23] WHINSTON A., Some applications of the conjugate function theory to duality,in [1]. Zbl0178.22803
  27. [24] WOLFE P., A duality theorem for non-linear programming, Quart. Appl. Math., 19, 1961, 239-244. Zbl0109.38406MR135625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.