An admissible synthesis for control systems on differentiable manifolds

Stefan Mirică

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1971)

  • Volume: 5, Issue: R1, page 73-104
  • ISSN: 0764-583X

How to cite

top

Mirică, Stefan. "An admissible synthesis for control systems on differentiable manifolds." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 5.R1 (1971): 73-104. <http://eudml.org/doc/193165>.

@article{Mirică1971,
author = {Mirică, Stefan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R1},
pages = {73-104},
publisher = {Dunod},
title = {An admissible synthesis for control systems on differentiable manifolds},
url = {http://eudml.org/doc/193165},
volume = {5},
year = {1971},
}

TY - JOUR
AU - Mirică, Stefan
TI - An admissible synthesis for control systems on differentiable manifolds
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1971
PB - Dunod
VL - 5
IS - R1
SP - 73
EP - 104
LA - eng
UR - http://eudml.org/doc/193165
ER -

References

top
  1. [1] G. St. JONES and A. STRAUSS, « An example of optimal control », S I A M Review, vol. 10, 1, 1968, pp. 25-55. Zbl0192.51701MR239867
  2. [2] B. E. LEE and L. MARKUS, Foundations of optimal control theory, , Willey, N.Y., 1967, pp. 446-454. Zbl0159.13201MR220537
  3. [3] St. MIRICÀ, « On the admissible synthesis in optimal control theory and differential games », J S.I.A.M. Control, vol. 7, 2, 1969, pp. 292-315. Zbl0182.48502MR253760
  4. [4] V. G. BOLTYANSKII, « Mathematical Methods of Optimal Control », Izd, Nauka,Moscow, 1966 (Russian). Zbl0249.49010MR207415
  5. [5] V. G. BOLTYANSKII, « Sufficient conditions for optimality and the justification of the dynamic programming method », J. S.I.A.M. Control, vol. 4, 2, 1966,pp. 326-361. Zbl0143.32004MR197205
  6. [6] L.D. BERKOVITZ, « Necessary conditions for optimal strategies in a class of differential games and control problems », J. S.I.A.M. Control, vol. 5, 1, 1967, pp. 1-24. Zbl0156.10102MR209027
  7. [7] L.D. BERKOVITZ, « Variational methods in problems of control and Programming », J . Math. Annal, and Appl., vol. 3, 1, 1961, pp. 145-169. Zbl0100.31005MR139030
  8. [8] R. ABRAHAM and J. MARSDEN, Foundations of Mechanics, Benjamin, N.Y., 1967. Zbl0158.42901
  9. [9] R. ABRAHAM and J. ROBBIN, Transversal Mappings and Flow, Benjamin, N. Y., 1967. Zbl0171.44404MR240836
  10. [10] C. GODBILLON, Géométrie Différentielle et Mécanique Analytique, Paris, Hermann, 1969. Zbl0174.24602MR242081
  11. [11] S. LANG, Introduction to Differentiable Manifolds, Interscience, New York, 1962. Zbl0103.15101MR155257
  12. [12] F. ALBRECHT, « Control vector fields on mannifolds and attainability », Lectures Notes in Operations Research and Mathematical Economies, vol. 12, Springer-Verlag, 1969, pp. 293-302. Zbl0192.53101MR324507
  13. [13] R. BELLMAN, Dynamic Programming, Princeton, Univ. Press, 1957. Zbl0077.13605MR90477
  14. [14] L. S. PONTRYAGIN, « Smooth manifolds and its Applications in the theory of homotopy », Trud.Math. Inst. im. V.A, Steklova, Moscow, 1965, T. LX, pp. 1-24(Russian). MR115178
  15. [15] L. S. PONTRYAGIN, Ordinary Differential Equations, Addison-Wesley, Reading, Massachusets, 1962. Zbl0112.05502MR140742
  16. [16] G. SANSONE, Equazioni differenziali nel Campo Reale, Bologna, 1948. Zbl0039.30901JFM67.0306.01
  17. [17] R. ISAACS, Differential Games, John Willey, N.Y., 1965. 

NotesEmbed ?

top

You must be logged in to post comments.