An admissible synthesis for control systems on differentiable manifolds

Stefan Mirică

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1971)

  • Volume: 5, Issue: R1, page 73-104
  • ISSN: 0764-583X

How to cite

top

Mirică, Stefan. "An admissible synthesis for control systems on differentiable manifolds." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 5.R1 (1971): 73-104. <http://eudml.org/doc/193165>.

@article{Mirică1971,
author = {Mirică, Stefan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R1},
pages = {73-104},
publisher = {Dunod},
title = {An admissible synthesis for control systems on differentiable manifolds},
url = {http://eudml.org/doc/193165},
volume = {5},
year = {1971},
}

TY - JOUR
AU - Mirică, Stefan
TI - An admissible synthesis for control systems on differentiable manifolds
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1971
PB - Dunod
VL - 5
IS - R1
SP - 73
EP - 104
LA - eng
UR - http://eudml.org/doc/193165
ER -

References

top
  1. [1] G. St. JONES and A. STRAUSS, « An example of optimal control », S I A M Review, vol. 10, 1, 1968, pp. 25-55. Zbl0192.51701MR239867
  2. [2] B. E. LEE and L. MARKUS, Foundations of optimal control theory, , Willey, N.Y., 1967, pp. 446-454. Zbl0159.13201MR220537
  3. [3] St. MIRICÀ, « On the admissible synthesis in optimal control theory and differential games », J S.I.A.M. Control, vol. 7, 2, 1969, pp. 292-315. Zbl0182.48502MR253760
  4. [4] V. G. BOLTYANSKII, « Mathematical Methods of Optimal Control », Izd, Nauka,Moscow, 1966 (Russian). Zbl0249.49010MR207415
  5. [5] V. G. BOLTYANSKII, « Sufficient conditions for optimality and the justification of the dynamic programming method », J. S.I.A.M. Control, vol. 4, 2, 1966,pp. 326-361. Zbl0143.32004MR197205
  6. [6] L.D. BERKOVITZ, « Necessary conditions for optimal strategies in a class of differential games and control problems », J. S.I.A.M. Control, vol. 5, 1, 1967, pp. 1-24. Zbl0156.10102MR209027
  7. [7] L.D. BERKOVITZ, « Variational methods in problems of control and Programming », J . Math. Annal, and Appl., vol. 3, 1, 1961, pp. 145-169. Zbl0100.31005MR139030
  8. [8] R. ABRAHAM and J. MARSDEN, Foundations of Mechanics, Benjamin, N.Y., 1967. Zbl0158.42901
  9. [9] R. ABRAHAM and J. ROBBIN, Transversal Mappings and Flow, Benjamin, N. Y., 1967. Zbl0171.44404MR240836
  10. [10] C. GODBILLON, Géométrie Différentielle et Mécanique Analytique, Paris, Hermann, 1969. Zbl0174.24602MR242081
  11. [11] S. LANG, Introduction to Differentiable Manifolds, Interscience, New York, 1962. Zbl0103.15101MR155257
  12. [12] F. ALBRECHT, « Control vector fields on mannifolds and attainability », Lectures Notes in Operations Research and Mathematical Economies, vol. 12, Springer-Verlag, 1969, pp. 293-302. Zbl0192.53101MR324507
  13. [13] R. BELLMAN, Dynamic Programming, Princeton, Univ. Press, 1957. Zbl0077.13605MR90477
  14. [14] L. S. PONTRYAGIN, « Smooth manifolds and its Applications in the theory of homotopy », Trud.Math. Inst. im. V.A, Steklova, Moscow, 1965, T. LX, pp. 1-24(Russian). MR115178
  15. [15] L. S. PONTRYAGIN, Ordinary Differential Equations, Addison-Wesley, Reading, Massachusets, 1962. Zbl0112.05502MR140742
  16. [16] G. SANSONE, Equazioni differenziali nel Campo Reale, Bologna, 1948. Zbl0039.30901JFM67.0306.01
  17. [17] R. ISAACS, Differential Games, John Willey, N.Y., 1965. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.