A decomposition-based control strategy for large, sparse dynamic systems.
This paper presents an algebraic design theory for interconnected systems. Usual multivariable linear systems are described in a unified way. Both square and nonsquare plants and controllers are included in the study and an easy characterization of the achievable I/O (input-to-output) and D/O (disturbance-to-output) maps is presented through the use of appropriate controllers. Sufficient conditions of stability are given.
The paper presents an alternative approach to the design of a hybrid adaptive controller of Linear Quadratic Gaussian (LQG) type for linear stochastic controlled system. The approach is based on the combination standard building blocks of discrete LQG adaptive controller with the non-standard technique of modelling of a controlled system and spline approximation of involved signals. The method could be of interest for control of systems with complex models, in particular distributed parameter systems....
Sufficient conditions for the conditional stability of trivial solutions for quadratic systems of ordinary differential equations are obtained. These conditions are then used to design linear control laws on the output for a bilinear system of any order. In the case of a homogeneous system, a domain of the conditional stability is also indicated (it is a cone). Some examples are given.
This paper presents a dynamic approach to the synthesis of a crank-rocker four-bar mechanism, that is obtained by an optimization problem and its solution using the swarm intelligence algorithm called Modified-Artificial Bee Colony (M-ABC). The proposed dynamic approach states a mono-objective dynamic optimization problem (MODOP), in order to obtain a set of optimal parameters of the system. In this MODOP, the kinematic and dynamic models of the whole system are consider as well as a set of constraints...