An algorithm for optimal syntheses in control problems

Stefan Mirică

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1971)

  • Volume: 5, Issue: R2, page 55-92
  • ISSN: 0764-583X

How to cite

top

Mirică, Stefan. "An algorithm for optimal syntheses in control problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 5.R2 (1971): 55-92. <http://eudml.org/doc/193176>.

@article{Mirică1971,
author = {Mirică, Stefan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {55-92},
publisher = {Dunod},
title = {An algorithm for optimal syntheses in control problems},
url = {http://eudml.org/doc/193176},
volume = {5},
year = {1971},
}

TY - JOUR
AU - Mirică, Stefan
TI - An algorithm for optimal syntheses in control problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1971
PB - Dunod
VL - 5
IS - R2
SP - 55
EP - 92
LA - eng
UR - http://eudml.org/doc/193176
ER -

References

top
  1. [1] R. ELLMAN, Dynamic Programming, , Princeton, Univ. Press, 1957. Zbl0077.13605MR90477
  2. [2] L. D. BERKOVITZ, « Necessary Conditions for Optimal Stratégies in a Class ofDifferential Games and Control Problems », / . Siam on Contrat,vol. 5, 1, 1967, 1-24. Zbl0156.10102MR209027
  3. [3] L. D. BERKOVITZ, « Variational Methods in Problems of Coütrol and Programming », J. Math. Anal and AppL, 3 (1961), 145-169. Zbl0100.31005MR139030
  4. [4] V. G. BOLTYANSKII, « Mathematical Methodes of Optimal Controle », Izd. Nauka, Moscow, 1969 (Russian). Zbl0249.49010MR353082
  5. [5] V. G. BOLTYANSKII, « Sufficient Conditions for Optimaly and the Justification of the Dynamic Programming Method », J. Siam on Control, 4 (1966), 326-361. Zbl0143.32004MR197205
  6. [6] V. G. BOLTYANSKII, « An Example of Nonlinea Synthesis », Differentialnie Uraunenia, t.4, 1970, 644-649 (Russian). Zbl0248.49006MR305203
  7. [7] E. A. CODDINGTON and N. LEVINSON , Theory of Ordinary Differential Equations , Mc Graw-Hill, N.Y. 1955. Zbl0064.33002MR69338
  8. [8] R. ISSACS , Differential Games , Willey, N.Y., 1965. 
  9. [9] E. B. LEE and L. MARKUS, Foundations of Optimal Control Theory, Willey, N. Y., 1967. Zbl0159.13201MR220537
  10. [10] St. MIRICA, « On the Admissible Synthesis in Optimal Control Theory and Differential Games », J. Siam on Control, 7, 2, 1969, 292-316. Zbl0182.48502MR253760
  11. [11] St. MIRICA, An Admissible Synthesis for controle System on Differentiable Manifolds, Revue Française d'Informatique et de Recherche Opérationnelle, R-1, 1971, p. 73-104. Zbl0231.93017MR289183
  12. [12] L. S. PONTRYAGIN, Ordinary Differential Equations, Addison, Wesley, Reading, Palo Alto, 1962. Zbl0112.05502MR140742

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.