Éléments finis et problèmes elliptiques dégénérés

J. M. Thomas; M. Crouzeix

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1973)

  • Volume: 7, Issue: R3, page 77-104
  • ISSN: 0764-583X

How to cite

top

Thomas, J. M., and Crouzeix, M.. "Éléments finis et problèmes elliptiques dégénérés." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 7.R3 (1973): 77-104. <http://eudml.org/doc/193252>.

@article{Thomas1973,
author = {Thomas, J. M., Crouzeix, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {R3},
pages = {77-104},
publisher = {Dunod},
title = {Éléments finis et problèmes elliptiques dégénérés},
url = {http://eudml.org/doc/193252},
volume = {7},
year = {1973},
}

TY - JOUR
AU - Thomas, J. M.
AU - Crouzeix, M.
TI - Éléments finis et problèmes elliptiques dégénérés
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1973
PB - Dunod
VL - 7
IS - R3
SP - 77
EP - 104
LA - fre
UR - http://eudml.org/doc/193252
ER -

References

top
  1. [1] CIARLET P. G., NATTERBR F. et VARGA R. S., Numerical methods of high-order accuracy for singular nonlinear boundary value problems. Numer. Math., 15, 87-99 (1971). Zbl0211.19103MR275686
  2. [2] CIARLET P. G. et RAVIART P. A., General Lagrange and Hermite interpolation in Rn with applications to finite elements methods. Arch. Rat. Mech. Anal., 46, 177-199 (1972). Zbl0243.41004MR336957
  3. [3] DAYLEY J. W. et PIERCE J. G., Error bounds for the Galerhin method applied to singular and nonsingular boundary value problems. Num. Math., 19, 266-282 (1972). Zbl0244.65075MR301954
  4. [4] JAMET P., On the convergence of finite-difference approximation to one dimensionl singular boundary value problems. Numer. Math., 14, 355-378 (1970). Zbl0179.22103MR261799
  5. [5] JEROME J. W. et PIERCE J. G., One spline functions determined by singular self-adjoint differential operators. Journal Approx. Theory, 5, 15-40 (1972). Zbl0228.41003MR421033
  6. [6] PARDOEN G. C., Deflection function for the symmetrical bending of circular plates. AIAA Journal, vol. 10, n° 2, 239-240 (1972). 
  7. [7] PARTER S. V., Numerical methods for generalized axially symmetric potentials. J. Soc. Indust. Appl. Math. Ser. B. Numer. Anal, 2, 500-516 (1965). Zbl0137.33402MR191113

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.