A dissipative Galerkin method applied to some quasilinear hyperbolic equations

Lars B. Wahlbin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1974)

  • Volume: 8, Issue: R2, page 109-117
  • ISSN: 0764-583X

How to cite

top

Wahlbin, Lars B.. "A dissipative Galerkin method applied to some quasilinear hyperbolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 8.R2 (1974): 109-117. <http://eudml.org/doc/193253>.

@article{Wahlbin1974,
author = {Wahlbin, Lars B.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {109-117},
publisher = {Dunod},
title = {A dissipative Galerkin method applied to some quasilinear hyperbolic equations},
url = {http://eudml.org/doc/193253},
volume = {8},
year = {1974},
}

TY - JOUR
AU - Wahlbin, Lars B.
TI - A dissipative Galerkin method applied to some quasilinear hyperbolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1974
PB - Dunod
VL - 8
IS - R2
SP - 109
EP - 117
LA - eng
UR - http://eudml.org/doc/193253
ER -

References

top
  1. [1] G. BIRKHOFF and G.-C. ROTA, Ordinary Differential Equations, Secondary Differential Equations, Second edition, Xerox College Publishing, Lexington 1969. Zbl0183.35601MR236441
  2. [2] J. E. DENDY, Two methods of Galerkin type achieving optimum L2-accuracy for first order hyperbolics, to appear in SIAM, J. Numer. Anal. Zbl0253.65064MR353695
  3. [3] J. Jr. DOUGLAS, T. DUPONT and L. WAHLBIN, Optimal L∞ error estimates for Galerkin approximations to solutions of two point boundary value problems, to appear in Math. Comp. Zbl0306.65053MR371077
  4. [4] T. DUPONT, Galerkin methods for first order hyperbolics: An example SIAM J. Numer. Anal. 10(1973), 890-899. Zbl0237.65070MR349046
  5. [5] T. DUPONT, L2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10(1973), 880-889. Zbl0239.65087MR349045
  6. [6] G. FIX and N. NASSIF, On finite element approximations to time dependent problems, Numer. Math. 19(1972), 127-135. Zbl0244.65063MR311122
  7. [7] J. NrrsCHE, Ein Kriterium für die Quasioptimalitat des Ritzschen Verfahrens, Numer. Math. 11(1968), 346-348. Zbl0175.45801MR233502
  8. [8] R. D. RICHTMYER and K. W. MORTON, Difference Methods for Initial Value Problems, Second edition, Interscience, NewYork, 1967. Zbl0155.47502MR220455
  9. [9] V. THOMÉE, Spline approximation and différence schemes for the heat equation, The Mathematical Foundations of the Finite Element Method (University of Maryland at Baltimore), Academic Press, NewYork, 1973. Zbl0279.65078MR403265
  10. [10] L. WAHLBIN, A dissipative Galerkin method for the numerical solution of first order hyperbolic equation, to appear in Mathematical Aspects of Finite Elements in Partial Differential Equations (MRC, University of Wisconsin at Madison), Academic Press. Zbl0346.65056
  11. A [11] M. F. WHEELER, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal, 10 (1973), 723-759. Zbl0232.35060MR351124

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.