Complementarity systems and approximation of variational inequalities

U. Mosco; F. Scarpini

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1975)

  • Volume: 9, Issue: R1, page 83-104
  • ISSN: 0764-583X

How to cite

top

Mosco, U., and Scarpini, F.. "Complementarity systems and approximation of variational inequalities." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 9.R1 (1975): 83-104. <http://eudml.org/doc/193266>.

@article{Mosco1975,
author = {Mosco, U., Scarpini, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R1},
pages = {83-104},
publisher = {Dunod},
title = {Complementarity systems and approximation of variational inequalities},
url = {http://eudml.org/doc/193266},
volume = {9},
year = {1975},
}

TY - JOUR
AU - Mosco, U.
AU - Scarpini, F.
TI - Complementarity systems and approximation of variational inequalities
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1975
PB - Dunod
VL - 9
IS - R1
SP - 83
EP - 104
LA - eng
UR - http://eudml.org/doc/193266
ER -

References

top
  1. [l] BAIOCCHI C.Su un problema di frontiera libera connesso a questioni di idraulica. Ann. Mat. Pura ed Appl. 92 (1972), 107-127. Zbl0258.76069MR408443
  2. [2] BAIOCCHI C. - COMINCIOLI V - GUERRI L . - VOLPI GFree boundray problems in the theory of fluid flow through porous media : a numerical approach. Calcolo 10 (1973) 1-86. Zbl0296.76052MR329288
  3. [3] BREZIS H - STAMPACCHIA GSur la régularité de la solution d'inéquations elliptiques. Bull. Soc. Math. France 96 (1968) 153-180. Zbl0165.45601MR239302
  4. [4] CHANDRASEKARAN R.Aspecial case of the complementanty pivot problem. Opsearch (1970), 263-268. MR282653
  5. [5] COMINCIOLI V. - GUERRI R. - VOLPI GAnalisi numerica di un frontiera libera connesso al moto di un fluido attraverso un mezzo poroso L A.N., C.N.R. 17 (1971) Pavia Zbl0263.65075
  6. [6] COMINCIOLI V.Metodi di nlassamento per la minimizzazione in uno spazio prodotto. L A N , C.N.R, 20 (1971) Pavia. Zbl0263.65076
  7. [7] COTTLE R W. - HABETLER G I - LEMKE C. E.Quadratic forms semidefinite over convex cones R.P.I. Math. Rep (1967) Reusselaer Polytechnic Inst Troy, New-York, 551-565. Zbl0221.15018MR332835
  8. [8] COTTLE R. W. - DANTZIG G.B.Positive (semi) definite programming Non Linerar Programming (Abadie J. Ed.) North-Holland Amsterdam (1967), 55-73. Zbl0178.22801MR219310
  9. [9] COTTLER R. W. - DANTZIG G B.Complementanty pivot theory of mathematical programming. Linear Algebra and its Appl 1 (1968) 103-125 Zbl0155.28403MR226929
  10. [l0] DE ANGELIS V - FUSCIARDI A. - SCHIAFFINO A.Some methods for the numerical solution of variational inequahties with two obstacles. Calcolo (to appear). Zbl0289.49027MR467470
  11. [11] DOLCETTA I.Sistemi di complementarità e diseguaglianze variazionah.Test Univ. di Roma (1972). 
  12. [l2] DURAND J.FResolution numérique des problèmes aux limites sous-harmoniques. Thèse, Univ. de Montpellier (1968). MR251928
  13. [13] DURAND J FL'algorithme de Gauss Seidel applique à un problème unilatéral non symétrique R A I R O , R-2 (1972), 23-30 MR389190
  14. [14] FALK R SError estimates for the approximation of a class of vanational inequalities Thesis, Rutger Univ New Bruswich Zbl0297.65061
  15. [15] FIEDLER M. - PTAK VOn matrices with non positive off diagonal elements and positive principal minors Czech Math J 12 (1962), 382-400 Zbl0131.24806MR142565
  16. [16] FUSCIARDI A. - MOSCO U - SCARPINI F CHlAFFINO AA dual method for the numencal solution of some vanational inequalities J Math Anal Appl 40 (1972), 471-493 Zbl0277.49011MR324513
  17. [17] GLOWINSKI RLa methode de relaxation Quaderm di Matematica Ist Mat Univ di Roma, 14 (1971) 
  18. [18] KARAMARDIANSThe nonlinear complementanty problem with application JOTA, 4 (1969), 87-98 
  19. [19] KARAMARDIANSThe complementaring problem Mathematical programming 2 (1972), 107-129 
  20. [20] LEMKE C ERecent results on complementanty problems Proceedings of the Princeton Symposium on Mathematical Programming (Kuhn H W Ed )Princeton Univ Press (1970), 349 384 Zbl0227.90043MR272400
  21. [21] LEVATI C - SCARPINI F - VOLPI GSul trattamento numenco di alcuni problemi vanazionali di tipo unilaterale L A N , C N R 82 (1974) Pavia Zbl0359.35001
  22. [22] LEWY H - STAMPACCHIA GOn the regulanty of a solution of a vanational inequahty Comm Pure Appl Math 22 (1969) 153 - 188 Zbl0167.11501MR247551
  23. [23] LEWY H - STAMPACCHIA GOn the smoothness of superharmonics which solve a minimum problem J d'Anal Math (1970), 227-236 Zbl0206.40702MR271383
  24. [24] LIONS J L - STAMPACCHIA GVanational inequahties Comm Pure Appl Math 20 (1967), 493-519 Zbl0152.34601MR216344
  25. [25] MANCINO O G - STAMPACCHIA GConvex programming and vanational inequahties, JOTA 9 (1972), 3-23 Zbl0223.90031MR305815
  26. [26] MARZULLI PRisoluzione alle differenze finite di equazioni alle denvate parzialli di tipo ellittico con condizioni su un contorno libero Calcolo Suppl 1,5 (1968), 1-22 
  27. [27] MORE JJThe application of variational inequalities to complementarity problems and existence theorems Tech Rep 71-110 Cornell Umv Ithaca 
  28. [28] MORE J JCoercitivity conditions in nonlinear complementanty problems Tech Rep 72-146 Cornell Umv Ithaca 
  29. [29] MORE J JClasses of functions and feasibility conditions in non-linear complementanty problems Tech Rep 73-174 Cornell Univ Ithaca Zbl0291.90059
  30. [30] MOREAU J JMajorantes sur-harmoniques minimales d'une f onction continue Sem d'Anal Umlat 5 (1968) Univ de Montpellier MR271384
  31. [31] MOREAU J JTraitement numenque d'un problème aux denvees partielles de type unilatéral Sem d'Anal Num 15 (1969) Univ de Montreal 
  32. [32] MOSCO UConvergence of convex sets and of solutions of vanational inequalitiesAdv in Math 3 (1969), 510-585 Zbl0192.49101MR298508
  33. 133] MOSCO UAn introduction to the approximate solution of vanational inequalities Constructive Aspects of Functional Analysis Corso CIME 1971 , Ed G Geymonat Cremonese, Roma (1973 ) Zbl0266.49005
  34. [34] MOSCO U.Dual variational inequalities, J. Math. Anal. Aopl. 39 (1972), 202-206. Zbl0262.49003MR313913
  35. [35] MOSCO U. - STRANG G.One sided approximation and variational inequalitites. Bull. A.M.S. 80, (1974), 308-312. Zbl0278.35026MR331818
  36. [36] MOSCO U. - TROIANIELLO G.On the smoothness of solutions of unilatéral Dirichlet problems. Boll. U.M.I. 8 (1973), 57-67. Zbl0277.35033MR390479
  37. [37] SIBONY M.Sur l'approximation d'équations aux dérivées partielles non linéaires de type monotone. J. Math. Anal. Appl. 34 (1971 ), 502-564. Zbl0216.42201MR420361
  38. [38] SIBONY M.Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone. Calcolo 2 (1970), 65-183. Zbl0225.35010MR659098
  39. [39] STAMPACCHIA G.Formes bilinéaires coercitives sur les ensembles convexes. C.R. Acad. Sc. Paris 258 (1964), 4413-4416. Zbl0124.06401MR166591
  40. [40] STAMPACCHIA G.On a problem of numerical analysis connected with the theory of variational inequalities. I.N.A.M. 10 Symposia Math. (1972),281-293. Zbl0265.49004MR367756
  41. [4l] TUCKER A.W.Principal pivot transforms of square matrices. SIAM 5 (1963)305. 
  42. [42] VARGA R.S.Matrix itérative analysis. Prentice - Hall (1962) New Jersey. Zbl0133.08602MR158502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.