The finite element method for ill-posed problems

Frank Natterer

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1977)

  • Volume: 11, Issue: 3, page 271-278
  • ISSN: 0764-583X

How to cite

top

Natterer, Frank. "The finite element method for ill-posed problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 11.3 (1977): 271-278. <http://eudml.org/doc/193302>.

@article{Natterer1977,
author = {Natterer, Frank},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {3},
pages = {271-278},
publisher = {Dunod},
title = {The finite element method for ill-posed problems},
url = {http://eudml.org/doc/193302},
volume = {11},
year = {1977},
}

TY - JOUR
AU - Natterer, Frank
TI - The finite element method for ill-posed problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1977
PB - Dunod
VL - 11
IS - 3
SP - 271
EP - 278
LA - eng
UR - http://eudml.org/doc/193302
ER -

References

top
  1. 1. A. K. AZIZ and I. BABUSKA, Survey Lectures on the Mathematical Foundations of the Finite Element Method. In : Aziz, A. K. (ed.) : The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, Academic Press, 1972. Zbl0268.65052MR421106
  2. 2. I. CEA, Optimisation, Théorie et Algorithmes. Dunod, Paris, 1971. Zbl0211.17402MR298892
  3. 3. J. N. FRANKLIN. On Tikhonov's Method for Ill-Posed Problems. Math. Comp. 28. 1974, p. 889-907 Zbl0297.65053MR375817
  4. 4. B. GUENTHER, E. K. KILLIAN, K. T. SMITH and S. L. WAGNER, Reconstruction of objects form Radiographs and the Location of Brain Tumors. Proc. at. Acad. Sci. USA. 71, 1974 p. 4884-4886. MR354065
  5. 5. L. L. LIONS et E. MAGNES, Problème avec limites non homogènes et applications, vol. 1. Dunod, Paris, 1968. Zbl0165.10801
  6. 6. D. LUDWIG, The Radon Transform on Euclidean Space. Comm. Pure Applied Math. 19, 1966, 49-81. Zbl0134.11305MR190652
  7. 7. R. MITTRA and C. A. KLEIN, Stability and Convergence of Moment Method Solutions. In : MITTRA, R. (ed) : Numerical and Asymptotic Techniques in Electromagnetics, Spinger, 1975. 
  8. 8. D. L. PHILIPPS. A Technique for the Numerical Solution of Certain Integral Equations ofthe First Kind. J. Ass. Comp. Mach. 9, 1962, p. 84-97. Zbl0108.29902MR134481
  9. 9. G. RIBIÈRE, Régularisation d'opérateurs. R.I.R.O., 1, 1967, p. 57-79. Zbl0184.37003MR224267
  10. 10. A. N. TIKHONOV, The Regularization of Incorrectly Posed Problems. Dokl. Akad. Nauk SSSR, 153, 1963, p. 42-52. Zbl0183.11601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.