The finite element method for ill-posed problems
- Volume: 11, Issue: 3, page 271-278
- ISSN: 0764-583X
Access Full Article
topHow to cite
topNatterer, Frank. "The finite element method for ill-posed problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 11.3 (1977): 271-278. <http://eudml.org/doc/193302>.
@article{Natterer1977,
author = {Natterer, Frank},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {3},
pages = {271-278},
publisher = {Dunod},
title = {The finite element method for ill-posed problems},
url = {http://eudml.org/doc/193302},
volume = {11},
year = {1977},
}
TY - JOUR
AU - Natterer, Frank
TI - The finite element method for ill-posed problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1977
PB - Dunod
VL - 11
IS - 3
SP - 271
EP - 278
LA - eng
UR - http://eudml.org/doc/193302
ER -
References
top- 1. A. K. AZIZ and I. BABUSKA, Survey Lectures on the Mathematical Foundations of the Finite Element Method. In : Aziz, A. K. (ed.) : The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, Academic Press, 1972. Zbl0268.65052MR421106
- 2. I. CEA, Optimisation, Théorie et Algorithmes. Dunod, Paris, 1971. Zbl0211.17402MR298892
- 3. J. N. FRANKLIN. On Tikhonov's Method for Ill-Posed Problems. Math. Comp. 28. 1974, p. 889-907 Zbl0297.65053MR375817
- 4. B. GUENTHER, E. K. KILLIAN, K. T. SMITH and S. L. WAGNER, Reconstruction of objects form Radiographs and the Location of Brain Tumors. Proc. at. Acad. Sci. USA. 71, 1974 p. 4884-4886. MR354065
- 5. L. L. LIONS et E. MAGNES, Problème avec limites non homogènes et applications, vol. 1. Dunod, Paris, 1968. Zbl0165.10801
- 6. D. LUDWIG, The Radon Transform on Euclidean Space. Comm. Pure Applied Math. 19, 1966, 49-81. Zbl0134.11305MR190652
- 7. R. MITTRA and C. A. KLEIN, Stability and Convergence of Moment Method Solutions. In : MITTRA, R. (ed) : Numerical and Asymptotic Techniques in Electromagnetics, Spinger, 1975.
- 8. D. L. PHILIPPS. A Technique for the Numerical Solution of Certain Integral Equations ofthe First Kind. J. Ass. Comp. Mach. 9, 1962, p. 84-97. Zbl0108.29902MR134481
- 9. G. RIBIÈRE, Régularisation d'opérateurs. R.I.R.O., 1, 1967, p. 57-79. Zbl0184.37003MR224267
- 10. A. N. TIKHONOV, The Regularization of Incorrectly Posed Problems. Dokl. Akad. Nauk SSSR, 153, 1963, p. 42-52. Zbl0183.11601
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.