On the approximation of the solution of an optimal control problem governed by an elliptic equation
- Volume: 13, Issue: 4, page 313-328
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGeveci, Tunc. "On the approximation of the solution of an optimal control problem governed by an elliptic equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 13.4 (1979): 313-328. <http://eudml.org/doc/193345>.
@article{Geveci1979,
author = {Geveci, Tunc},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error estimates; approximate solutions; optimal control problem; Neumann problem; saddle point; Fenchel-Rockafellar duality theory},
language = {eng},
number = {4},
pages = {313-328},
publisher = {Dunod},
title = {On the approximation of the solution of an optimal control problem governed by an elliptic equation},
url = {http://eudml.org/doc/193345},
volume = {13},
year = {1979},
}
TY - JOUR
AU - Geveci, Tunc
TI - On the approximation of the solution of an optimal control problem governed by an elliptic equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1979
PB - Dunod
VL - 13
IS - 4
SP - 313
EP - 328
LA - eng
KW - error estimates; approximate solutions; optimal control problem; Neumann problem; saddle point; Fenchel-Rockafellar duality theory
UR - http://eudml.org/doc/193345
ER -
References
top- 1. P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in with applications to finite element methods, Arc. Rat. Mech. Anal., Vol. 46, 1972, pp. 177-199. Zbl0243.41004MR336957
- 2. I. EKELAND and R. TEMAM, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
- 3. R. S. FALK, Approximation of a Class of Optimal Control Problems with Order of Convergence Estimates, J. Math. Anal. Appl., Vol. 44, 1973, pp. 28-47. Zbl0268.49036MR686788
- 4. R. GLOWINSKI, Introduction to the Approximation of Elliptic Variational Inequalities, Université Paris-VI, Laboratoire Analyse numérique, Vol. 189, Paris, 1976.
- 5. P. GRISVARD, Behaviour of Solutions of an Elliptic Boundary Value Problem in a Polygonal or Polyhedral Domain, SYNSPADE, 1974, B. HUBBARD, Ed., pp. 207-274, Academic Press, New York, 1976. Zbl0361.35022MR466912
- 6. W. W. HAGER and K. MITTER, Lagrange Duality for Convex Control Problems, S.I.A.M. J. Control, Vol. 14, 1976, pp. 842-856. Zbl0336.49007
- 7. O. A. LADYZHENSKAYA and N. N. URAL'TSEVA, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
- 8. I. LASIECKA and K. MALANOWSKI, On Regularity of Solutions to Convex Optimal Control Problems with Control Constraints for Parabolic Systems, Control and Cybernetics, Vol. 6, 1977, pp. 57-74. Zbl0365.49003MR467439
- 9. I. LASIECKA and K. MALANOWSKI, On discrete-Time Ritz-Galerkin Approximation of Control Constrained Optimal Control Problems for Parabolic Systems, Control and Cybernetics, Vol. 7, 1978, pp. 21-36. Zbl0459.49022MR484630
- 10. A. LEWY and G. STAMPACCHIA, On the Regularity of the Solution of a Variational Inequality, Comm. Pure Appl. Math., Vol. 22, 1969, pp. 153-188. Zbl0167.11501MR247551
- 11. J.-L. LIONS, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971. Zbl0203.09001MR271512
- 12. J. MOSSINO, An Application of Duality to Distributed Optimal Control Problems with Constraints on the Control and the State, J. Math. Anal. Appl., Vol. 50, 1975, pp. 223-242. Zbl0304.49003MR385670
- 13. M. M. MOUSSAOUI, Régularité de la solution d'un problème à dérivée oblique, C. R. Acad. Sc, Paris, Vol. 279, série A, 1974, pp. 869-872. Zbl0293.35014MR358062
- 14. J. T. ODEN and N. N. REDDY, An Introduction to the Mathematical Theory of Finite Elements, Wiley-Interscience, New York, 1976. Zbl0336.35001MR461950
- 15. T. ROCKAFELLAR, State Constraints in Convex Control Problems of Bolza, S.I.A.M. J. Control, Vol. 10, 1972, pp. 691-715. Zbl0224.49003MR324505
- 16. G. STAMPACCHIA, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Vol. 15, 1968, pp. 189-258. Zbl0151.15401MR192177
Citations in EuDML Documents
top- Eduardo Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints
- Eduardo Casas, Error Estimates for the Numerical Approximation of Semilinear Elliptic Control Problems with Finitely Many State Constraints
- Thomas Apel, Dieter Sirch, -error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.