On the approximation of the solution of an optimal control problem governed by an elliptic equation

Tunc Geveci

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1979)

  • Volume: 13, Issue: 4, page 313-328
  • ISSN: 0764-583X

How to cite

top

Geveci, Tunc. "On the approximation of the solution of an optimal control problem governed by an elliptic equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 13.4 (1979): 313-328. <http://eudml.org/doc/193345>.

@article{Geveci1979,
author = {Geveci, Tunc},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error estimates; approximate solutions; optimal control problem; Neumann problem; saddle point; Fenchel-Rockafellar duality theory},
language = {eng},
number = {4},
pages = {313-328},
publisher = {Dunod},
title = {On the approximation of the solution of an optimal control problem governed by an elliptic equation},
url = {http://eudml.org/doc/193345},
volume = {13},
year = {1979},
}

TY - JOUR
AU - Geveci, Tunc
TI - On the approximation of the solution of an optimal control problem governed by an elliptic equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1979
PB - Dunod
VL - 13
IS - 4
SP - 313
EP - 328
LA - eng
KW - error estimates; approximate solutions; optimal control problem; Neumann problem; saddle point; Fenchel-Rockafellar duality theory
UR - http://eudml.org/doc/193345
ER -

References

top
  1. 1. P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in R n with applications to finite element methods, Arc. Rat. Mech. Anal., Vol. 46, 1972, pp. 177-199. Zbl0243.41004MR336957
  2. 2. I. EKELAND and R. TEMAM, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  3. 3. R. S. FALK, Approximation of a Class of Optimal Control Problems with Order of Convergence Estimates, J. Math. Anal. Appl., Vol. 44, 1973, pp. 28-47. Zbl0268.49036MR686788
  4. 4. R. GLOWINSKI, Introduction to the Approximation of Elliptic Variational Inequalities, Université Paris-VI, Laboratoire Analyse numérique, Vol. 189, Paris, 1976. 
  5. 5. P. GRISVARD, Behaviour of Solutions of an Elliptic Boundary Value Problem in a Polygonal or Polyhedral Domain, SYNSPADE, 1974, B. HUBBARD, Ed., pp. 207-274, Academic Press, New York, 1976. Zbl0361.35022MR466912
  6. 6. W. W. HAGER and K. MITTER, Lagrange Duality for Convex Control Problems, S.I.A.M. J. Control, Vol. 14, 1976, pp. 842-856. Zbl0336.49007
  7. 7. O. A. LADYZHENSKAYA and N. N. URAL'TSEVA, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
  8. 8. I. LASIECKA and K. MALANOWSKI, On Regularity of Solutions to Convex Optimal Control Problems with Control Constraints for Parabolic Systems, Control and Cybernetics, Vol. 6, 1977, pp. 57-74. Zbl0365.49003MR467439
  9. 9. I. LASIECKA and K. MALANOWSKI, On discrete-Time Ritz-Galerkin Approximation of Control Constrained Optimal Control Problems for Parabolic Systems, Control and Cybernetics, Vol. 7, 1978, pp. 21-36. Zbl0459.49022MR484630
  10. 10. A. LEWY and G. STAMPACCHIA, On the Regularity of the Solution of a Variational Inequality, Comm. Pure Appl. Math., Vol. 22, 1969, pp. 153-188. Zbl0167.11501MR247551
  11. 11. J.-L. LIONS, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971. Zbl0203.09001MR271512
  12. 12. J. MOSSINO, An Application of Duality to Distributed Optimal Control Problems with Constraints on the Control and the State, J. Math. Anal. Appl., Vol. 50, 1975, pp. 223-242. Zbl0304.49003MR385670
  13. 13. M. M. MOUSSAOUI, Régularité de la solution d'un problème à dérivée oblique, C. R. Acad. Sc, Paris, Vol. 279, série A, 1974, pp. 869-872. Zbl0293.35014MR358062
  14. 14. J. T. ODEN and N. N. REDDY, An Introduction to the Mathematical Theory of Finite Elements, Wiley-Interscience, New York, 1976. Zbl0336.35001MR461950
  15. 15. T. ROCKAFELLAR, State Constraints in Convex Control Problems of Bolza, S.I.A.M. J. Control, Vol. 10, 1972, pp. 691-715. Zbl0224.49003MR324505
  16. 16. G. STAMPACCHIA, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Vol. 15, 1968, pp. 189-258. Zbl0151.15401MR192177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.