Construction d’une base de fonctions non conforme à divergence nulle dans
- Volume: 15, Issue: 2, page 119-150
- ISSN: 0764-583X
Access Full Article
topHow to cite
topHecht, F.. "Construction d’une base de fonctions $P_1$ non conforme à divergence nulle dans $\mathbb {R}^3$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.2 (1981): 119-150. <http://eudml.org/doc/193372>.
@article{Hecht1981,
author = {Hecht, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {basis of piecewise linear function on tetrahedra; graph theory about maximal trees},
language = {fre},
number = {2},
pages = {119-150},
publisher = {Dunod},
title = {Construction d’une base de fonctions $P_1$ non conforme à divergence nulle dans $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/193372},
volume = {15},
year = {1981},
}
TY - JOUR
AU - Hecht, F.
TI - Construction d’une base de fonctions $P_1$ non conforme à divergence nulle dans $\mathbb {R}^3$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 2
SP - 119
EP - 150
LA - fre
KW - basis of piecewise linear function on tetrahedra; graph theory about maximal trees
UR - http://eudml.org/doc/193372
ER -
References
top- 1. M. CROUZEIX et P. A. RAVIART, Conforming and non-conforming finite elementmethodsfor sohing the stationary Stokes équations, R.A.I.R.O., R-3 (1973), pp. 33-76. Zbl0302.65087MR343661
- 2. M. FORTIN, Résolution numérique des équations de Navier-Stokes par des élémentsfinis de type mixte, Rapport de Recherche 184 (LABORIA-INRIA), août 1976.
- 3. C. TAYLOR et P. HOOD, A numerical solution of the Navier-Stokes équations using thefinite element technique, Computers and Fluids, 1 (1973), pp. 73-100. Zbl0328.76020MR339677
- 4. M. BERCOVIER, Afamily of finite éléments with pénalisation for the numerical solu-tion of Stokes and Navier-Stokes équations, in Gilchrist (1977). Zbl0383.65065
- 5. O.C. ZIENCKIEWICZ and P. N GODBOLE, Viscous incompressible flows with specialréférence to non-newtonian (plastic) fluids, in « Finite Element Method in Flow Problems », Wiley, New York (1975).
- 6. R. TEMAN, Theory and numerical analysis of the Navier-Stokes équations, NorthHolland, Amsterdam (1977). Zbl0383.35057
- 7 M. CROUZEIX, Proceedings of Journées « éléments finis », Université de Rennes (1976).
- 8 F. THOMASSET, Numerical solution of the Navier-Stokes équations by finite élémentmethods, VKI Lecture séries, no. 86 (Computational fluid dynamics, March 21-25, 1977).
- 9. P. G. CIARLET, The fimte element method for elhptic problems, North Holland (1978). Zbl0383.65058MR520174
- 10. M. BERGER, Géométrie, Cedic/Fernand Nathan Zbl0382.51012
- 11. C. GODBILLON, Topologie Algébrique, Herman
- 12. S. LANG, Algebra, Addison-Wesley Pubhshing company. Zbl0193.34701MR197234
- 13. F. HECHT, Thèse de 3e cycle, Université de Pans 6 (1980).
- 14 C. BERGE, Théorie des Graphes, Dunod
Citations in EuDML Documents
top- Christine Bernardi, Frédéric Hecht, Olivier Pironneau, Coupling Darcy and Stokes equations for porous media with cracks
- Christine Bernardi, Frédéric Hecht, Olivier Pironneau, Coupling Darcy and Stokes equations for porous media with cracks
- Christine Bernardi, Frédéric Hecht, More pressure in the finite element discretization of the Stokes problem
- Christine Bernardi, Frédéric Hecht, More pressure in the finite element discretization of the Stokes problem
- Yongxing Shen, Adrian J. Lew, A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity
- Yongxing Shen, Adrian J. Lew, A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity
- Yongxing Shen, Adrian J. Lew, A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.