Construction d’une base de fonctions P 1 non conforme à divergence nulle dans 3

F. Hecht

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1981)

  • Volume: 15, Issue: 2, page 119-150
  • ISSN: 0764-583X

How to cite

top

Hecht, F.. "Construction d’une base de fonctions $P_1$ non conforme à divergence nulle dans $\mathbb {R}^3$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.2 (1981): 119-150. <http://eudml.org/doc/193372>.

@article{Hecht1981,
author = {Hecht, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {basis of piecewise linear function on tetrahedra; graph theory about maximal trees},
language = {fre},
number = {2},
pages = {119-150},
publisher = {Dunod},
title = {Construction d’une base de fonctions $P_1$ non conforme à divergence nulle dans $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/193372},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Hecht, F.
TI - Construction d’une base de fonctions $P_1$ non conforme à divergence nulle dans $\mathbb {R}^3$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 2
SP - 119
EP - 150
LA - fre
KW - basis of piecewise linear function on tetrahedra; graph theory about maximal trees
UR - http://eudml.org/doc/193372
ER -

References

top
  1. 1. M. CROUZEIX et P. A. RAVIART, Conforming and non-conforming finite elementmethodsfor sohing the stationary Stokes équations, R.A.I.R.O., R-3 (1973), pp. 33-76. Zbl0302.65087MR343661
  2. 2. M. FORTIN, Résolution numérique des équations de Navier-Stokes par des élémentsfinis de type mixte, Rapport de Recherche 184 (LABORIA-INRIA), août 1976. 
  3. 3. C. TAYLOR et P. HOOD, A numerical solution of the Navier-Stokes équations using thefinite element technique, Computers and Fluids, 1 (1973), pp. 73-100. Zbl0328.76020MR339677
  4. 4. M. BERCOVIER, Afamily of finite éléments with pénalisation for the numerical solu-tion of Stokes and Navier-Stokes équations, in Gilchrist (1977). Zbl0383.65065
  5. 5. O.C. ZIENCKIEWICZ and P. N GODBOLE, Viscous incompressible flows with specialréférence to non-newtonian (plastic) fluids, in « Finite Element Method in Flow Problems », Wiley, New York (1975). 
  6. 6. R. TEMAN, Theory and numerical analysis of the Navier-Stokes équations, NorthHolland, Amsterdam (1977). Zbl0383.35057
  7. 7 M. CROUZEIX, Proceedings of Journées « éléments finis », Université de Rennes (1976). 
  8. 8 F. THOMASSET, Numerical solution of the Navier-Stokes équations by finite élémentmethods, VKI Lecture séries, no. 86 (Computational fluid dynamics, March 21-25, 1977). 
  9. 9. P. G. CIARLET, The fimte element method for elhptic problems, North Holland (1978). Zbl0383.65058MR520174
  10. 10. M. BERGER, Géométrie, Cedic/Fernand Nathan Zbl0382.51012
  11. 11. C. GODBILLON, Topologie Algébrique, Herman 
  12. 12. S. LANG, Algebra, Addison-Wesley Pubhshing company. Zbl0193.34701MR197234
  13. 13. F. HECHT, Thèse de 3e cycle, Université de Pans 6 (1980). 
  14. 14 C. BERGE, Théorie des Graphes, Dunod 

Citations in EuDML Documents

top
  1. Christine Bernardi, Frédéric Hecht, Olivier Pironneau, Coupling Darcy and Stokes equations for porous media with cracks
  2. Christine Bernardi, Frédéric Hecht, Olivier Pironneau, Coupling Darcy and Stokes equations for porous media with cracks
  3. Christine Bernardi, Frédéric Hecht, More pressure in the finite element discretization of the Stokes problem
  4. Christine Bernardi, Frédéric Hecht, More pressure in the finite element discretization of the Stokes problem
  5. Yongxing Shen, Adrian J. Lew, A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity
  6. Yongxing Shen, Adrian J. Lew, A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity
  7. Yongxing Shen, Adrian J. Lew, A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.