More pressure in the finite element discretization of the Stokes problem

Christine Bernardi; Frédéric Hecht

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 34, Issue: 5, page 953-980
  • ISSN: 0764-583X

Abstract

top
For the Stokes problem in a two- or three-dimensional bounded domain, we propose a new mixed finite element discretization which relies on a nonconforming approximation of the velocity and a more accurate approximation of the pressure. We prove that the velocity and pressure discrete spaces are compatible, in the sense that they satisfy an inf-sup condition of Babuška and Brezzi type, and we derive some error estimates.

How to cite

top

Bernardi, Christine, and Hecht, Frédéric. "More pressure in the finite element discretization of the Stokes problem." ESAIM: Mathematical Modelling and Numerical Analysis 34.5 (2010): 953-980. <http://eudml.org/doc/197510>.

@article{Bernardi2010,
abstract = { For the Stokes problem in a two- or three-dimensional bounded domain, we propose a new mixed finite element discretization which relies on a nonconforming approximation of the velocity and a more accurate approximation of the pressure. We prove that the velocity and pressure discrete spaces are compatible, in the sense that they satisfy an inf-sup condition of Babuška and Brezzi type, and we derive some error estimates. },
author = {Bernardi, Christine, Hecht, Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Finite elements; Stokes problem; inf-sup condition; divergence-free basis functions.; mixed finite element discretization; nonconforming approximation of velocity; approximation of pressure; error estimates},
language = {eng},
month = {3},
number = {5},
pages = {953-980},
publisher = {EDP Sciences},
title = {More pressure in the finite element discretization of the Stokes problem},
url = {http://eudml.org/doc/197510},
volume = {34},
year = {2010},
}

TY - JOUR
AU - Bernardi, Christine
AU - Hecht, Frédéric
TI - More pressure in the finite element discretization of the Stokes problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 5
SP - 953
EP - 980
AB - For the Stokes problem in a two- or three-dimensional bounded domain, we propose a new mixed finite element discretization which relies on a nonconforming approximation of the velocity and a more accurate approximation of the pressure. We prove that the velocity and pressure discrete spaces are compatible, in the sense that they satisfy an inf-sup condition of Babuška and Brezzi type, and we derive some error estimates.
LA - eng
KW - Finite elements; Stokes problem; inf-sup condition; divergence-free basis functions.; mixed finite element discretization; nonconforming approximation of velocity; approximation of pressure; error estimates
UR - http://eudml.org/doc/197510
ER -

References

top
  1. K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming. Stanford University Press, Stanford (1958).  
  2. I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math.20 (1973) 179-192.  
  3. C. Bergé, Théorie des graphes. Dunod, Paris (1970).  
  4. J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal.20 (1983) 722-731.  
  5. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO - Anal. Numér.8 R2 (1974) 129-151.  
  6. P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in the Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17-351.  
  7. P. Clément, Développement et applications de méthodes numériques volumes finis pour la description d'écoulements océaniques. Thesis, Université Joseph Fourier, Grenoble (1996).  
  8. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO - Anal. Numér.7 R3 (1973) 33-76.  
  9. P. Emonot, Méthodes de volumes éléments finis: application aux équations de Navier-Stokes et résultats de convergence. Thesis, Université Claude Bernard, Lyon (1992).  
  10. M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO - Anal. Numér.11 R3 (1977) 341-354.  
  11. V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986).  
  12. F. Hecht, Construction d'une base d'un élément fini P1 non conforme à divergence nulle dans 3 . Thesis, Université Pierre et Marie Curie, Paris (1980).  
  13. F. Hecht, Construction d'une base de fonctions P1 non conforme à divergence nulle dans 3 . RAIRO - Anal. Numér.15 (1981) 119-150.  
  14. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO - Anal. Numér.18 (1984) 175-182.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.