On a mixed finite element method for the Stokes problem in 3

Juhani Pitkäranta

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1982)

  • Volume: 16, Issue: 3, page 275-291
  • ISSN: 0764-583X

How to cite

top

Pitkäranta, Juhani. "On a mixed finite element method for the Stokes problem in $\mathbb {R}^3$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.3 (1982): 275-291. <http://eudml.org/doc/193400>.

@article{Pitkäranta1982,
author = {Pitkäranta, Juhani},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed element; rectangular domain; three dimensional; stability for pressure; superapproximation properties for velocities; regular mesh},
language = {eng},
number = {3},
pages = {275-291},
publisher = {Dunod},
title = {On a mixed finite element method for the Stokes problem in $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/193400},
volume = {16},
year = {1982},
}

TY - JOUR
AU - Pitkäranta, Juhani
TI - On a mixed finite element method for the Stokes problem in $\mathbb {R}^3$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 3
SP - 275
EP - 291
LA - eng
KW - mixed element; rectangular domain; three dimensional; stability for pressure; superapproximation properties for velocities; regular mesh
UR - http://eudml.org/doc/193400
ER -

References

top
  1. [1] I BABUSKA, Error bounds for finite element methods, Numer Math 16, 1971, pp 322-333. Zbl0214.42001MR288971
  2. [2] F BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO 8-R2, 1974, pp 129-151. Zbl0338.90047MR365287
  3. [3] P CIARLET, The Finite Element Method for Elliptic Problems, North Holland, 1978. Zbl0383.65058MR520174
  4. [4] B DALY, F HARLOW, J SAHNNON and J WELCH, The MAC method, Technical report LA-3425, Los Alamos Scientific Laboratory, 1965. 
  5. [5] V GIRAUTL and P-A RAVIART, Finite Element Approximation of the Navter-Stokes Equations, Lecture Notes in Mathematics, Springer, Berlin, 1979. Zbl0413.65081MR540128
  6. [6] P GRISVARD, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, in Numerical Solution of Partial Differential Equations III, ed B Hubbard, Academic Press, New York, 1976. Zbl0361.35022MR466912
  7. [7] C JOHNSON and J PITKARANTA, Analysis of some mixed finite element methods related to reduced integration, Preprint, Chalmers University of Technology, 1980. Zbl0482.65058MR645657
  8. [8] D ted to red and T HUGUES, Mixed finite element methods reduced and selective integration techniques a unification of concepts, Comp Meth Appl Mech Engng 15, 1978, pp 63-81. Zbl0381.73075
  9. [9] H MELZER and R RANNACHER, Spannungskonzentrationen in der Eckpunkten der vertikalen belasteten Kirchoffschen Platte, Preprint, 1979, Universitat Bonn. 
  10. [10] R SANI, P GRESHO, R LEE and GRIFFITHS, The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-stokes equations, Preprint, 1980, Lawrence Livermore Laboratory. Zbl0461.76021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.