Finite element methods for the three-field Stokes system in 3 : Galerkin methods

V. Ruas

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 4, page 489-525
  • ISSN: 0764-583X

How to cite

top

Ruas, V.. "Finite element methods for the three-field Stokes system in $\mathbb {R}^3$ : Galerkin methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.4 (1996): 489-525. <http://eudml.org/doc/193813>.

@article{Ruas1996,
author = {Ruas, V.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convergence analysis of second order method; tetrahedral meshes; technique of parametrized degrees of freedom; first order methods},
language = {eng},
number = {4},
pages = {489-525},
publisher = {Dunod},
title = {Finite element methods for the three-field Stokes system in $\mathbb \{R\}^3$ : Galerkin methods},
url = {http://eudml.org/doc/193813},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Ruas, V.
TI - Finite element methods for the three-field Stokes system in $\mathbb {R}^3$ : Galerkin methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 4
SP - 489
EP - 525
LA - eng
KW - convergence analysis of second order method; tetrahedral meshes; technique of parametrized degrees of freedom; first order methods
UR - http://eudml.org/doc/193813
ER -

References

top
  1. [1] G. ACQUARDRO QUACCHIA, 1987, Resoluçâo Computacional de um Problema de Viscoelasticidade Plana Incompressfvel via Elementos Finitos Mistos, Master's Dissertation. Pontificia Universidade Catolica do Rio de Janieiro. 
  2. [2] R. A. ADAMS, 1970, Sobolev Spaces, Academie Press, New York. Zbl1098.46001MR450957
  3. [3] D. N. ARNOLD, F. BREZZI and M. FORTIN, 1984, A stable finite element method for the Stokes equation, Calcolo, 21-4, pp. 337-344. Zbl0593.76039MR799997
  4. [4] G. ASTARITA and G. MARRUCCI, 1974, Principles of Non-Newtonian Fluid Mechanics, MGraw-Hill, New York. Zbl0316.73001
  5. [5] I. BABUSKA, 1973, The finite element method with lagrange multipliers, Numer. Math., 20, pp. 179-192. Zbl0258.65108MR359352
  6. [6] J. BARANGER and D. SANDRI, 1991, Approximation par éléments finis d'écoulements de fluides viscoélastiques. Existence de solutions approchées et majorations d'erreur. C. R. Acad. Sci. Paris, 312, Série I, pp. 541-544. Zbl0718.76010MR1099689
  7. [7] R.B. BIRD, R. C. ARMSTRONG and O. HASSAGER, 1987, Dynamics of Polymenc Liquids, Vol. 1, Fluid Mechamcs, Second edition, John Wiley & Sons, New York. 
  8. [8] H. BREZZI, 1983, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris. Zbl1147.46300MR697382
  9. [9] F. BREZZI, 1974, On the existence, uniqueness and approximation of saddlle-point problems arising from lagrange multipliers, RAIRO, Série rouge, Analyse Numérique R-2, pp. 129-151. Zbl0338.90047MR365287
  10. [10] P. G. CIARLET, 1986, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. Zbl0383.65058
  11. [11] M. J. CROCHET, A. R. DAVIES and K. WALTERS, 1984, Numencal Simulation of Non-Newtonian Flow, Elsevier, Amsterdam. Zbl0583.76002
  12. [12] B. DUPIRE, 1985, Problemas Varionais Lineares, sua Aproximaçâo e Formulaçöes Mistas, Doctoral Thesis, Pontifïcia Universidade Católica do Rio de Janeiro. 
  13. [13] G. DUVAUT, 1990, Mécanique des Milieux Continus, Masson, Paris. 
  14. [14] G. DUVANT and J.-L. LIONS, 1972, Les Inéquations en Mécanique et en Physique, Masson, Paris. Zbl0298.73001
  15. [15] A. FORTIN and M. FORTIN, 1990, A preconditioned generalized minimal residual algorithm for the numerical solution of viscoelastic flows, Journal of Non-Newtonian fluid Mechanics, 36, pp. 277-288. Zbl0708.76012
  16. [16] M. FORTIN and R. PIERRE, 1988, On the convergence of the Mixed Method of Crochet & Marchal for Viscoelastic Flows, Comp. Meth. Appl. Mech. Engin., 73, pp. 341-350. Zbl0692.76002MR1016647
  17. [17] L. FRANCA and R. STENBERG, 1991Error analysis of some Galerkin-least-squares methods for the elasticity equations, SIAM Journal of Numerical Analysis, 28-6, pp. 1680-1697. Zbl0759.73055MR1135761
  18. [18] P. GERMAIN, 1973, Cours de Mécanique des Milieux Continus, Masson & Cie, Paris. Zbl0254.73001MR368541
  19. [19] V. GIRAULT and A. P. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer Serie in Computational Mathematics 5, Springer-Verlag, Berlin. Zbl0585.65077MR851383
  20. [20] P. GRISVARD, 1992, Singularities in Boundary Values Problems, In Research Notes in Applied Mathematics, P. G. Ciarlet & J.-L. Lions eds., Masson & Springer Verlag, Paris. Zbl0766.35001MR1173209
  21. [21] O. LADYZHENSKAYA, 1963, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, Reading, Berkshire. Zbl0121.42701MR155093
  22. [22] P. LESAINT and P. A. RAVIART, 1976. On a finite element method for solving the neutron transport equations, in : Mathematical Aspects of Finite Element Methods in Partial Differential Equations, C. de Boor ed., Academic Press, New York. Zbl0341.65076
  23. [23] J. L. LIONS and E. MAGENES, 1968, Problèmes aux Limites Non-homogènes et Applications, Dinod, Paris. Zbl0165.10801
  24. [24] M. A. MONTEIRO SILVA RAMOS, 1993, Um Modelo Numérico para a Simulaçâo do Escoamento de Fluidos Viscoelâsticos via Elementos Finitos, Doctoral Thesis, Pontificia Univesidade Católica do Rio de Janeiro. 
  25. [25] J. PITKÄRANTA, 1982, On a mixed finite element method for the Stokes Problem in R3, RAIRO, Analyse Numérique, 16-3, pp. 275-291. Zbl0488.76039MR672419
  26. [26] V. RUAS, 1980, Sur l'application de quelques méthodes d'éléments finis à la résolution d'un problème d'élasticité incompressible non linéaire, Rapport de Recherche 24, INRIA, Rocquencourt, France. 
  27. [27] V. RUAS, 1982, Une méthode d'éléments finis non conformes en vitesse pour le problème de Stokes tridimensionnel. Matematica Aplicada e Compuracional, 1-1, pp.53-74. Zbl0489.76049MR667618
  28. [28] V. RUAS, 1985, Une méthode mixte contrainte-déplacement-pression pour la résolution de problèmes de viscoélasticité incompressible en déformations planes, C. R. Acad. Sc., Paris, 301, série II, 16, pp. 1171-1174. Zbl0578.73041MR827628
  29. [29] V. RUAS, 1985, Finite element solution of 3D viscous flow problems using non standard degrees of freedom, Japan Journal of Applied Mathematics, 2-2, pp. 415-431. Zbl0611.76038MR839337
  30. [30] V. RUAS and J. H. CARNEIRO DE ARAUJO, 1992, Un método de elementos finitos quadrilatelares mejorado para el sistema de Stokes asociado al flujo de fluidos viscoelâsticos, Revista Internacional sobre Métodos Numéricos para Càlculo y Diseno en Ingenieria, 8-1, pp.77-85. MR1160319
  31. [31] V. RUAS, 1992, Finite Element Methods for Three-Dimensional Incompressible Flow, in Finite Element in Fluids, Vol. 8, T. J. Chung ed., Hemisphere Publishing Corporation, Washington, Chapter X, pp. 211-235. MR1188025
  32. [32] V. RUAS, 1992, A convergent three field quadrilateral finite element method for simulating viscoelastic flow on irregular meshes. Revue Européenne des Éléments finis, 4-1, pp.391-406. Zbl0924.76060
  33. [33] V. RUAS, J. H. CARNEIRO DE ARAUJO, M. A. SILVA RAMOS, 1993, Approximation of the three-field Stokes System via optimized quadrilateral finite elements, Modélisation Mathématiques et Analyse Numérique, 27-1, pp. 107-127. Zbl0765.76053MR1204631
  34. [34] V. RUAS, 1994, An optimal three-field finite element approximation of the Stokes System with continuous extra stresses, Japan Journal of Industrial and Applied Mathematics, 11-1, pp. 103-130. Zbl0797.76045MR1266524
  35. [35] V. RUAS, Galerkin-least-squares finite element methods for the three-field Stokes System in three-dimension space, to appear. Zbl0894.76040
  36. [36] D. SANDRI, 1993, Analyse d'une formulation à trois champs du problème de Stokes, Modélisation Mathématique et Analyse Numérique, 27-7, pp. 817-841. Zbl0791.76008MR1249454
  37. [37] R. I. TANNER, 1985, Engineering Rheology, Claredon Press, Oxford. Zbl1012.76002MR830210
  38. [38] O. C. ZIENKIEWICZ, 1971, The Finite Element Method in Engineering Science. McGraw Hill, Maidenhead. Zbl0237.73071MR315970

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.