Apparition de motifs géométriques dans une membrane enzymatique
- Volume: 18, Issue: 1, page 87-116
- ISSN: 0764-583X
Access Full Article
topHow to cite
topJoly, G., and Kernevez, J. P.. "Apparition de motifs géométriques dans une membrane enzymatique." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.1 (1984): 87-116. <http://eudml.org/doc/193426>.
@article{Joly1984,
author = {Joly, G., Kernevez, J. P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {pattern formation; steady state solutions; diffusion-reaction system; morphogenesis; sequential bifurcations; stability; embryonic structure; sequential cell differentiations},
language = {fre},
number = {1},
pages = {87-116},
publisher = {Dunod},
title = {Apparition de motifs géométriques dans une membrane enzymatique},
url = {http://eudml.org/doc/193426},
volume = {18},
year = {1984},
}
TY - JOUR
AU - Joly, G.
AU - Kernevez, J. P.
TI - Apparition de motifs géométriques dans une membrane enzymatique
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1984
PB - Dunod
VL - 18
IS - 1
SP - 87
EP - 116
LA - fre
KW - pattern formation; steady state solutions; diffusion-reaction system; morphogenesis; sequential bifurcations; stability; embryonic structure; sequential cell differentiations
UR - http://eudml.org/doc/193426
ER -
References
top- [1] A. M. TURING, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London,Vol. B 237 (1952), 37-72.
- [2] I. PRJGOGINE et G. NICOLIS, On symmetry breaking instabilities in dissipativeSystems, J. Chem. Phys., 46 (1967), 3542-3550.
- [3] I. PRIGOGINE, R. LEFEVER, A. GOLDBETER et M. HERSCHKOWITZ-KAUFMAN, Symmetry breaking instabilities in biological Systems, Nature, 223 (1969), 913-916.
- [4] H. G. OTHMER et L. E. SCRTVEN, Instability and dynamic pattern in cellular networks, J. Theor. Biol., 32 (1971), 507-537.
- [5] A. GIERER et H. MEINHARDT, A theory of biological pattern formation, Kybernetika (Prague) 12 (1972), 30-39. Zbl0297.92007
- [6] L. WOLPERT, Positional information and the developmenl of pattern and form: Cowan J. D. (éd.), Some mathematical questions in biology 5 (The American Mathematical Society, Providence, 1974).
- [7] A. BABLOYANTZ et J. HIERNAUX, Modeis for cell differentiation and génération ofpolarity in diffusion-controlled morphogenetic fields, Bull. Math. Biol., 37 (1975), 637-657. Zbl0317.92016
- [8] B.C. GOODWIN, Analytical physiology of cells and deveioping organisms (Academic Press, New York, 1976).
- [9] J. D. MURRAY, Lectures on nonlinear differential-equation models in biology Clarendon Press, Oxford, 1977). Zbl0379.92001
- [10] G. NICOLIS et I. PRIGOGINE, Self-organization in nonequilibrium Systems, frontdissipative structures to order through fluctuations, fronmdissipative structures to order through fluctuations (Wiley-Interscience, New York, 1977). Zbl0363.93005MR522141
- [11] M. MIMURA et J. D. MURRAY, Spatial structures in a model substrate-inhibitiondiffusion System, Z.Naturforsch, 33 C (1978), 580-586.
- [12] P. C. FIFE, Mathematical aspects of reacting and diffusing Systems, (Springer-Verlag, Berlin, 1979). Zbl0403.92004MR527914
- [13] J. HIERNAUX et T. ERNEUX, Chemical patterns in circular morphogenetic fields, Bull. Math. Biol., 41 (1979), 461-468. MR631874
- [14] J. P. KERNEVEZ, G. JOLY, M. C. DUBAN, B. BUNOW and D. THOMAS, Hystérésis,oscillations andpattern formation inrealistic immobilized enzyme Systems,J. Math. Biology, 7 (1979), 41-56. Zbl0433.92014MR648839
- [15] S. A. KAUFFMAN, R. M. SHYMKO et K. TRABERT, Control of sequential compartmentformation in Drosophila, a uniform mechanism may control the locations of successivebinary developmental commitments, Science, Vol. 199 (1978), 259-270.
- [16] A. GARCIA-BELLIDO et J. P. MERRIAM, Parameters of the wing imaginal disc deve-lopment of Drosophila melanogaster, Develop. Biol., 24 (1971), 61-87.
- [17] A. GARCIA-BELLIDO, P. RIPOLL et P. MORATA, Developmental compartmentaliza-tion ofthe wing disk of Drosophila, Nature NewBiol., 245(1973), 251-253.
- [18] J. P. KERNEVEZ, Enzyme Mathematics : Studies in Mathematics and its applications, Vol. 10 (North-Holland, 1980). Zbl0446.92007MR594596
- [19] G. MEURAUT et J. C. SAUT, Bifurcation and stability in a chemical system, J. Math. Anal, and Appi. 59 (1977), 69-91. Zbl0355.35009MR462242
- [20] J. A. BOA et D. S. COHEN, Bifurcation of localized disturbances in a model bioche-mical reaction, Siam J. Appl. Math., Vol. 30, n° 1(1976), 123-135. Zbl0328.76065
- [21] D. HENRY, Geometrie theory of semilinear parabolie équations, lecture notes in Vlathematics n° 840, Springer-Verlag, NewYork, 1981. Zbl0456.35001MR610244
- [22] KATO T., Perturbation theory for linear operators (Springer-Verlag, New York, 1960). Zbl0435.47001
- [23] G. LOSS, Bifurcation et stabilité. Publications mathématiques d'Orsay, N° 31 (Université de Paris Sud, Orsay, 1972).
- [24] H.P. KEENER et H. B. KELLER, Perturbed bifurcation theory, Arch. Rat. Mech. Anal., Vol. 50 (1973), 159-175. Zbl0254.47080MR336479
- [25] D. W. DECKER, Topics in bifurcation theory, Ph. D. Thesis, California ïnstitute of Technology, Pasadena, California, 1978.
- [26] H. B. KELLER, TWOnewbifurcation phenomena, IRIA Research Report n° 369 (1979). Zbl0505.35009
- [27] M. G. CRANDALL et P. H. RABINOWITZ, Bifurcation, perturbation of simple eigen values, and linearized stability, Arch. Rat. Mech. Anal. 52 (1973), 161-180. Zbl0275.47044MR341212
- [28] M. KUBICEK, Dependence of solution of nonlinear Systems on a parameter, ACM Transactions on Mathematical Software, Vol 2, 1 (March 1976), 98-107. Zbl0317.65019
- [29] H.B. KELLER, Numerical solution of bifurcation andnon linear eigen value problems, 359-384 : Rabinowitz P.H. (éd.), Applications of bifurcation theory (Academic Press, New York, 1977). Zbl0581.65043MR455353
- [30] G. JOLY, J. P. KERNEVEZ, M. SHARAN, Calculation of the bifurcation branches inreaction-difjusion Systems (à paraître dans Acta Applicandae Mathematicae).
- [31] J. P. KERNEVEZ, E. DOEDEL, M. C. DUBAN, J. F. HERVAGAULT, G. JOLY et D. THOMAS, Spatio-temporal organization in immobilized enzyme Systems, à paraître. Zbl0523.92008
- [32] J. P. KERNEVEZ, J. D. MURRAY, G. JOLY, M. C. DUBAN et D. THOMAS, Propagationd'onde dans un système à enzyme immobilisée, CRAS 387, A (1978), 961-964. Zbl0391.65050MR520780
- [33] J. P. KERNEVEZ, G. JOLY et M. SHARAN, Control of Systems with multiple steadystates, pp. 635-649 in : Glowinski, R. and Lions, J. L. (éd.), Computing Methods in Applied Sciences and Engineering, North Holland, Amsterdam, 1982. Zbl0499.65041MR784656
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.