Apparition de motifs géométriques dans une membrane enzymatique

G. Joly; J. P. Kernevez

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1984)

  • Volume: 18, Issue: 1, page 87-116
  • ISSN: 0764-583X

How to cite

top

Joly, G., and Kernevez, J. P.. "Apparition de motifs géométriques dans une membrane enzymatique." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.1 (1984): 87-116. <http://eudml.org/doc/193426>.

@article{Joly1984,
author = {Joly, G., Kernevez, J. P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {pattern formation; steady state solutions; diffusion-reaction system; morphogenesis; sequential bifurcations; stability; embryonic structure; sequential cell differentiations},
language = {fre},
number = {1},
pages = {87-116},
publisher = {Dunod},
title = {Apparition de motifs géométriques dans une membrane enzymatique},
url = {http://eudml.org/doc/193426},
volume = {18},
year = {1984},
}

TY - JOUR
AU - Joly, G.
AU - Kernevez, J. P.
TI - Apparition de motifs géométriques dans une membrane enzymatique
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1984
PB - Dunod
VL - 18
IS - 1
SP - 87
EP - 116
LA - fre
KW - pattern formation; steady state solutions; diffusion-reaction system; morphogenesis; sequential bifurcations; stability; embryonic structure; sequential cell differentiations
UR - http://eudml.org/doc/193426
ER -

References

top
  1. [1] A. M. TURING, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London,Vol. B 237 (1952), 37-72. 
  2. [2] I. PRJGOGINE et G. NICOLIS, On symmetry breaking instabilities in dissipativeSystems, J. Chem. Phys., 46 (1967), 3542-3550. 
  3. [3] I. PRIGOGINE, R. LEFEVER, A. GOLDBETER et M. HERSCHKOWITZ-KAUFMAN, Symmetry breaking instabilities in biological Systems, Nature, 223 (1969), 913-916. 
  4. [4] H. G. OTHMER et L. E. SCRTVEN, Instability and dynamic pattern in cellular networks, J. Theor. Biol., 32 (1971), 507-537. 
  5. [5] A. GIERER et H. MEINHARDT, A theory of biological pattern formation, Kybernetika (Prague) 12 (1972), 30-39. Zbl0297.92007
  6. [6] L. WOLPERT, Positional information and the developmenl of pattern and form: Cowan J. D. (éd.), Some mathematical questions in biology 5 (The American Mathematical Society, Providence, 1974). 
  7. [7] A. BABLOYANTZ et J. HIERNAUX, Modeis for cell differentiation and génération ofpolarity in diffusion-controlled morphogenetic fields, Bull. Math. Biol., 37 (1975), 637-657. Zbl0317.92016
  8. [8] B.C. GOODWIN, Analytical physiology of cells and deveioping organisms (Academic Press, New York, 1976). 
  9. [9] J. D. MURRAY, Lectures on nonlinear differential-equation models in biology Clarendon Press, Oxford, 1977). Zbl0379.92001
  10. [10] G. NICOLIS et I. PRIGOGINE, Self-organization in nonequilibrium Systems, frontdissipative structures to order through fluctuations, fronmdissipative structures to order through fluctuations (Wiley-Interscience, New York, 1977). Zbl0363.93005MR522141
  11. [11] M. MIMURA et J. D. MURRAY, Spatial structures in a model substrate-inhibitiondiffusion System, Z.Naturforsch, 33 C (1978), 580-586. 
  12. [12] P. C. FIFE, Mathematical aspects of reacting and diffusing Systems, (Springer-Verlag, Berlin, 1979). Zbl0403.92004MR527914
  13. [13] J. HIERNAUX et T. ERNEUX, Chemical patterns in circular morphogenetic fields, Bull. Math. Biol., 41 (1979), 461-468. MR631874
  14. [14] J. P. KERNEVEZ, G. JOLY, M. C. DUBAN, B. BUNOW and D. THOMAS, Hystérésis,oscillations andpattern formation inrealistic immobilized enzyme Systems,J. Math. Biology, 7 (1979), 41-56. Zbl0433.92014MR648839
  15. [15] S. A. KAUFFMAN, R. M. SHYMKO et K. TRABERT, Control of sequential compartmentformation in Drosophila, a uniform mechanism may control the locations of successivebinary developmental commitments, Science, Vol. 199 (1978), 259-270. 
  16. [16] A. GARCIA-BELLIDO et J. P. MERRIAM, Parameters of the wing imaginal disc deve-lopment of Drosophila melanogaster, Develop. Biol., 24 (1971), 61-87. 
  17. [17] A. GARCIA-BELLIDO, P. RIPOLL et P. MORATA, Developmental compartmentaliza-tion ofthe wing disk of Drosophila, Nature NewBiol., 245(1973), 251-253. 
  18. [18] J. P. KERNEVEZ, Enzyme Mathematics : Studies in Mathematics and its applications, Vol. 10 (North-Holland, 1980). Zbl0446.92007MR594596
  19. [19] G. MEURAUT et J. C. SAUT, Bifurcation and stability in a chemical system, J. Math. Anal, and Appi. 59 (1977), 69-91. Zbl0355.35009MR462242
  20. [20] J. A. BOA et D. S. COHEN, Bifurcation of localized disturbances in a model bioche-mical reaction, Siam J. Appl. Math., Vol. 30, n° 1(1976), 123-135. Zbl0328.76065
  21. [21] D. HENRY, Geometrie theory of semilinear parabolie équations, lecture notes in Vlathematics n° 840, Springer-Verlag, NewYork, 1981. Zbl0456.35001MR610244
  22. [22] KATO T., Perturbation theory for linear operators (Springer-Verlag, New York, 1960). Zbl0435.47001
  23. [23] G. LOSS, Bifurcation et stabilité. Publications mathématiques d'Orsay, N° 31 (Université de Paris Sud, Orsay, 1972). 
  24. [24] H.P. KEENER et H. B. KELLER, Perturbed bifurcation theory, Arch. Rat. Mech. Anal., Vol. 50 (1973), 159-175. Zbl0254.47080MR336479
  25. [25] D. W. DECKER, Topics in bifurcation theory, Ph. D. Thesis, California ïnstitute of Technology, Pasadena, California, 1978. 
  26. [26] H. B. KELLER, TWOnewbifurcation phenomena, IRIA Research Report n° 369 (1979). Zbl0505.35009
  27. [27] M. G. CRANDALL et P. H. RABINOWITZ, Bifurcation, perturbation of simple eigen values, and linearized stability, Arch. Rat. Mech. Anal. 52 (1973), 161-180. Zbl0275.47044MR341212
  28. [28] M. KUBICEK, Dependence of solution of nonlinear Systems on a parameter, ACM Transactions on Mathematical Software, Vol 2, 1 (March 1976), 98-107. Zbl0317.65019
  29. [29] H.B. KELLER, Numerical solution of bifurcation andnon linear eigen value problems, 359-384 : Rabinowitz P.H. (éd.), Applications of bifurcation theory (Academic Press, New York, 1977). Zbl0581.65043MR455353
  30. [30] G. JOLY, J. P. KERNEVEZ, M. SHARAN, Calculation of the bifurcation branches inreaction-difjusion Systems (à paraître dans Acta Applicandae Mathematicae). 
  31. [31] J. P. KERNEVEZ, E. DOEDEL, M. C. DUBAN, J. F. HERVAGAULT, G. JOLY et D. THOMAS, Spatio-temporal organization in immobilized enzyme Systems, à paraître. Zbl0523.92008
  32. [32] J. P. KERNEVEZ, J. D. MURRAY, G. JOLY, M. C. DUBAN et D. THOMAS, Propagationd'onde dans un système à enzyme immobilisée, CRAS 387, A (1978), 961-964. Zbl0391.65050MR520780
  33. [33] J. P. KERNEVEZ, G. JOLY et M. SHARAN, Control of Systems with multiple steadystates, pp. 635-649 in : Glowinski, R. and Lions, J. L. (éd.), Computing Methods in Applied Sciences and Engineering, North Holland, Amsterdam, 1982. Zbl0499.65041MR784656

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.