Approximation numérique de certaines équations paraboliques non linéaires

C. Bernardi; G. Raugel

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1984)

  • Volume: 18, Issue: 3, page 237-285
  • ISSN: 0764-583X

How to cite

top

Bernardi, C., and Raugel, G.. "Approximation numérique de certaines équations paraboliques non linéaires." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.3 (1984): 237-285. <http://eudml.org/doc/193434>.

@article{Bernardi1984,
author = {Bernardi, C., Raugel, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Galerkin method in space; difference method in time; error estimates},
language = {fre},
number = {3},
pages = {237-285},
publisher = {Dunod},
title = {Approximation numérique de certaines équations paraboliques non linéaires},
url = {http://eudml.org/doc/193434},
volume = {18},
year = {1984},
}

TY - JOUR
AU - Bernardi, C.
AU - Raugel, G.
TI - Approximation numérique de certaines équations paraboliques non linéaires
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1984
PB - Dunod
VL - 18
IS - 3
SP - 237
EP - 285
LA - fre
KW - Galerkin method in space; difference method in time; error estimates
UR - http://eudml.org/doc/193434
ER -

References

top
  1. [1] R. A. ADAMS, Sobolev Spaces, Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] C. BERNARDI, Numerical approximation of a periodic linear parabolic problem, SIAM J. Numer. Anal. 19, 1196-1207 (1982). Zbl0493.65041MR679659
  3. [3] C. BERNARDI, Approximation of Hopf bifurcation, Numer. Math. 39, 15-37 (1982). Zbl0456.65034MR664534
  4. [4] C. BERNARDI, Optimal finite element interpolation on curved domains (à paraître). Zbl0678.65003
  5. [5] F. BREZZI, J. RAPPAZ, P.-A. RAVIART, Finite-dimensional approximation of non-linear problems, Part I : branches of nonsingular solutions. Numer. Math. 36, 1-25 (1980). Zbl0488.65021MR595803
  6. [6] F. BREZZI, J. RAPPAZ, P.-A. RAVIARTFinite-dimensional approximation of non-linear problems, Part II : limit points. Numer. Math. 37, 1-28 (1981). Zbl0525.65036MR615889
  7. [7] F. BREZZI, J. RAPPAZ, P.-A. RAVIART. Finite-dimensional approximation of non-linear problems, Part III : simple bifurcation points. Numer. Math. Math. 38, 1-30 (1981). Zbl0525.65037MR634749
  8. [8] P. G. CIARLET, The finite element method for elliptic problems, North-Holland (1978). Zbl0383.65058MR520174
  9. [9] P. CLEMENT, Approximation by finite element functions using local regularization, R.A.I.R.O. 9, n° 2, 77-84 (1975). Zbl0368.65008MR400739
  10. [10] J. DOUGLAS Jr, T. DUPONT, Galerkin methods for parabolic problems, SIAM J. Numer. Anal. 7, 575-626 (1970). Zbl0224.35048MR277126
  11. [11] V. GIRAULT, P.-A. RAVIART, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics 749, Springer-Verlag (1979). Zbl0413.65081MR548867
  12. [12] V GIRAULT, P -A RAVIART, An analysis of upwind schemes for the Navier-Stokes equations, SIAM J Numer Anal 19, 312-333 (1982). Zbl0487.76036MR650053
  13. [13] P GRISVARD, Boundary value problems in non-smooth domains, Lecture notes University of Maryland (1980). 
  14. [14] J L LIONS, E MAGENES, Problemes aux limites non homogenes et applications, volume I Dunod Paris (1968). Zbl0165.10801
  15. [15] J L LIONS, E MAGENESProblemes aux limites non homogenes et applications, volume II Dunod Paris (1968). Zbl0165.10801
  16. [16] R TEMAM, Navie-Stokes equations Theory and numerical analysis, North-Holland Amsterdam (1977). Zbl0383.35057
  17. [17] C BAIOCCHI, F BREZZI, Optimal error estimates for linear parabolic problems under minimal regularity assumptions, Calcole XX n° 2, 101 (1983). Zbl0538.65077MR746351

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.