Incompressible limit behaviour of slightly compressible nonlinear elastic materials

H. Le Dret

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 2, page 315-340
  • ISSN: 0764-583X

How to cite

top

Le Dret, H.. "Incompressible limit behaviour of slightly compressible nonlinear elastic materials." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.2 (1986): 315-340. <http://eudml.org/doc/193479>.

@article{LeDret1986,
author = {Le Dret, H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear elastostatics; incompressibility as limit compressibility; penalised coercive polyconvex incompressible strain energy function; minimizers for the penalised (compressible) energy; converge weakly; incompressible energy minimizer; Strong convergence; existence theorems of Ball; formal asymptotic expansion; strong solution to the equilibrium equations; incompressible equilibrium equations},
language = {eng},
number = {2},
pages = {315-340},
publisher = {Dunod},
title = {Incompressible limit behaviour of slightly compressible nonlinear elastic materials},
url = {http://eudml.org/doc/193479},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Le Dret, H.
TI - Incompressible limit behaviour of slightly compressible nonlinear elastic materials
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 2
SP - 315
EP - 340
LA - eng
KW - nonlinear elastostatics; incompressibility as limit compressibility; penalised coercive polyconvex incompressible strain energy function; minimizers for the penalised (compressible) energy; converge weakly; incompressible energy minimizer; Strong convergence; existence theorems of Ball; formal asymptotic expansion; strong solution to the equilibrium equations; incompressible equilibrium equations
UR - http://eudml.org/doc/193479
ER -

References

top
  1. [1] R. A. ADAMS, Sobolev spaces, Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] J. M. BALL, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 63 (1977), pp. 307-403. Zbl0368.73040MR475169
  3. [3] J. M. BALL, J. C. CURRIE, P. J. OLVER, Null Lagrangians, weak continuity and variational problems of arbitrary order, J. Functional Analysis 41 (1981), pp. 135-174. Zbl0459.35020MR615159
  4. [4] J. M. BALL, J. E. MARSDEN, Quasiconvexity at the boundary, positivity of the second variation and elastic stability, Arch. Rat. Mech. Anal. 86 (1984), pp. 251-277. Zbl0552.73006MR751509
  5. [5] P. G. CIARLET, G. GEYMONAT, Sur les lois de comportement en élasticité non linéaire compressible, C.R. Acad. Sci. Paris, Série A, 295 (1982), pp. 423-426. Zbl0497.73017MR695540
  6. [6] D. G. EBIN, The motion of slightly compressible fluids viewed as a motion with strong constraining force, Ann of Math 105 (1977), pp. 141-200. Zbl0373.76007MR431261
  7. [7] G. GEYMONAT, E. SANCHEZ PALENCIA, Spectral properties of certain stiff problems in elasticity and acoustics part II, Pubblicaziom dell' Istituto Matematico del Politecnico di Torino, Serie II, No 21 (1982). Zbl0561.35059
  8. [8] H. LE DRET, Constitutive laws and existence questions in incompressible nonlinear elasticity, J Elasticity 15 (1985), pp. 369-387. Zbl0648.73013MR817376
  9. [9] P. LE TALLEC, Les problèmes d'équilibre d'un corps hypérelastique incompressible en grandes déformations, These d'État, Université Pierre et Marie Curie, Paris (1981). 
  10. [10] J. L. LIONS, Réduction à des problèmes de Cauchy-Kowalewska, 2e cicle, CIME, Numerical analysis of partial differential equations, Ispra 1967, Cremonese, Roma (1968). Zbl0179.22502MR244605
  11. [11] L. NIRENBERG, Topics in nonlinear functional analysis, N Y U Courant Institute Lecture Notes, New York (1974). Zbl0286.47037MR488102
  12. [12] R. W. OGDEN, Large deformation isotropic elasticity on the correlation of theory and experiment for compressible rubberlike solids, Proc R Soc Lond A 328 (1972), pp. 567-583. Zbl0245.73032
  13. [13] M. G. PELISSIER, Résolution numérique de quelques problèmes raides en mécanique des milieux faiblement compressibles Calcolo 12 (1975), pp. 275-314. Zbl0328.65060MR421247
  14. [14] J. M. POUYOT, Études numériques de problèmes d'élasticité non lineaire application au calcul d'elastomeres dans des configurations sévères, These de 3e cycle, Université de Bordeaux I (1984). 
  15. [15] R. TEMAM, Une méthode d'approximation de la solution des équations de Navier-Stokes, Bull S M F 96 (1968), pp. 115-152. Zbl0181.18903MR237972
  16. [16] C. TRUESDELL, W. NOLL, The nonlinear field théories of mechanics, Handbuch der Physik vol III/3, Springer Verlag, Berlin (1965). Zbl0779.73004MR1215940
  17. [17] T. VALENT, Sulla differenziabilita dell'operatore di Nemytsky, Rend Acc Naz Lincei 65 (1978), pp. 15-26. Zbl0424.35084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.