Finite element solutions for radiation cooling problems with nonlinear boundary conditions

Kazuo Ishihara

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 3, page 461-477
  • ISSN: 0764-583X

How to cite

top

Ishihara, Kazuo. "Finite element solutions for radiation cooling problems with nonlinear boundary conditions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.3 (1986): 461-477. <http://eudml.org/doc/193486>.

@article{Ishihara1986,
author = {Ishihara, Kazuo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {radiation cooling problems; finite element method; nonlinear boundary conditions; numerical results},
language = {eng},
number = {3},
pages = {461-477},
publisher = {Dunod},
title = {Finite element solutions for radiation cooling problems with nonlinear boundary conditions},
url = {http://eudml.org/doc/193486},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Ishihara, Kazuo
TI - Finite element solutions for radiation cooling problems with nonlinear boundary conditions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 3
SP - 461
EP - 477
LA - eng
KW - radiation cooling problems; finite element method; nonlinear boundary conditions; numerical results
UR - http://eudml.org/doc/193486
ER -

References

top
  1. [1] R. A. ADAMS, Sobolev SpacesSobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] K. BABA and M. TABATA, On a conservative upwind finite element scheme forconvective diffusion equations, RAIRO Anal. Numér. 1515 (1981), 3-25. Zbl0466.76090MR610595
  3. [3] P. G. CIARLET, Discrete maximum principle for finite-difference operators, Aequationes Math. 44 (1970), 338-352. Zbl0198.14601MR292317
  4. [4] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  5. [5] P. G. CIARLET and P. A. RAVIART, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17-31. Zbl0251.65069MR375802
  6. [6] D. S. COHEN, Generalized radiation cooling of a convex solid, J. Math. Anal. Appl. 35 (1971), 503-511. Zbl0218.35036MR284092
  7. [7] A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964. Zbl0144.34903MR181836
  8. [8] H. FUJII, Some remarks on finite element analysis of time-dependent field problems, Theory and Practice in Finite Element Structural Analysis (ed. by Yamada, and Gallagher, R. H.), 91-106, Univ. of Tokyo Press, Tokyo, 1973. Zbl0373.65047
  9. [9] K.On finite element schemes of the Dirichlet problem for a System of ISHIHARA, On finite element schemes of the Dirichlet problem for a system of nonlinear elliptic equations, Numer. Funct. Anal. Optim. 3 (1981), 105-136. Zbl0469.65071MR619817
  10. [10] K. ISHIHARA, Finite element approximations applied to the nonlinear boundary value problem Δ ( u ) = b ( u ) 2 , Publ. Res. Inst. Math. Sci. 18 (1982), 17-34. Zbl0492.65062MR660820
  11. [11] K. ISHIHARA, Monotone explicit iterations of the finite element approximations for the nonlinear boundary value problem, Numer. Math. 43 (1984), 419-437. Zbl0531.65061MR738386
  12. [12] K. ISHIHARA, Explicit iterations with monotonicity for finite element approximations applied to a system of nonlinear elliptic equations, J. Approx. Theory 44 (1985), 241-252. Zbl0599.65074MR794607
  13. [13] W. R. MANN and F. WOLF, Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9 (1951), 163-184. Zbl0043.10001MR42596
  14. [14] W. E. OLMSTEAD, Temperature distribution in a convex solid with nonlinear radiation boundary condition, J. Math. Mech. 15 (1966), 899-908. Zbl0145.36004MR197047
  15. [15] J. M. ORTEGA, Numerical Analysis, Academic Press, New-York, 1972. Zbl0248.65001MR403154
  16. [16] M. H. PROTTER and H. F. WEINBERGER, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1967. Zbl0153.13602MR219861
  17. [17] R. E. SHOWALTER, Hilbert Space Methods for Partial Differential Equations, Pitman Press, London, 1977. Zbl0364.35001MR477394
  18. [18] G. STAMPACCHIA, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258. Zbl0151.15401MR192177
  19. [19] G. STRANG and A. BERGER, The change in solution due to change in domain, Proc. Sympos. Pure Math. on Partial Differential Equations, 23 (1973), 199-205. Zbl0259.35020MR337023
  20. [20] M. TABATA, Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J. Math. Kyoto Univ. 18 (1978), 327-351. Zbl0391.65038MR495024
  21. [21] V. THOMÉE, Polygonal domain approximation in Dirichlet's problem, J. Inst. Math. Appl. 11 (1973), 33-44. Zbl0246.35023MR349044
  22. [22] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. Zbl0133.08602MR158502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.