On a conservation upwind finite element scheme for convective diffusion equations
- Volume: 15, Issue: 1, page 3-25
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBaba, Kinji, and Tabata, Masahisa. "On a conservation upwind finite element scheme for convective diffusion equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.1 (1981): 3-25. <http://eudml.org/doc/193369>.
@article{Baba1981,
author = {Baba, Kinji, Tabata, Masahisa},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {conservative upwind scheme; convective diffusion equations; discrete maximum principle},
language = {eng},
number = {1},
pages = {3-25},
publisher = {Dunod},
title = {On a conservation upwind finite element scheme for convective diffusion equations},
url = {http://eudml.org/doc/193369},
volume = {15},
year = {1981},
}
TY - JOUR
AU - Baba, Kinji
AU - Tabata, Masahisa
TI - On a conservation upwind finite element scheme for convective diffusion equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 1
SP - 3
EP - 25
LA - eng
KW - conservative upwind scheme; convective diffusion equations; discrete maximum principle
UR - http://eudml.org/doc/193369
ER -
References
top- 1. K. BABA and S. YOSHII, An upwind scheme for convective diffusion equation by finite element method, Proceedings of VIIIth International Congress on Application of Mathematics in Engineering, Weimar/DDR, 1978. Zbl0386.76067
- 2. J. H. BRAMBLE and S. R. HILBERT, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math., 16 (1971), 362-369. Zbl0214.41405MR290524
- 3. P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolationin Rn with applications to finite element methods, Arch. Rational Mech. AnaL,46 (1971), 177-199. Zbl0243.41004MR336957
- 4. P. G. CIARLET and P. A. RAVIART, Maximum principle and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, 2 (1973), 17-31. Zbl0251.65069MR375802
- 5. H. FUJII, Some remarks on finite element analysis of time-dependent field problems,Theory and practice in finite element structural analysis, ed. by Yamada, Y. and Gallagher, R. H., 91-106, Univ. of Tokyo Press, Tokyo, 1973. Zbl0373.65047
- 6. R. GORENFLO, Energy conserving discretizations of diffusion equations, Paper submitted for publication in the Proceedings of the Conference on Numerical Methods in Keszthely/Hungary, 1977. Zbl0466.76086
- 7. F. C. HEINRICH, P. S. HUYAKORN, O. C. ZIENKIEWICZ and A. R. MITCHELL, An " upwind "finite element scheme for two dimensional convective-transport equation,Int. J. Num. Meth. Engng., 11 (1977), 131-143. Zbl0353.65065
- 8. F. C. HEINRICH and O. C. ZIENKIEWICZ, The finite element method and " upwinding " techniques in the numerical solution of confection dominated flow problems, Preprint for the ASME winter annual meeting on fini te element methods for convection dominated flows, 1979. Zbl0436.76062
- 9. T. IKEDA, Artificial viscosity infinite element approximations to the diffusion equation with drift terms, to appear in Lecture Notes in Num. Appl. Anal., 2. Zbl0468.76087
- 10. H. KANAYAMA, Discrete models for salinity distribution in a bay-Conservation law and maximum principle, to appear in Theoretical and Applied Mechanics, 28.
- 11. F. KIKUCHI, The discrete maximum principle and artificial viscosity in finite element approximations to convective diffusion equations, Institute of Space and Aeronautical Science, University of Tokyo, Report n° 550 (1977).
- 12. M. TABATA, A finite element approximation corresponding to the upwind finite differencing, Memoirs of Numerical Mathematics, 4 (1977), 47-63. Zbl0358.65102MR448957
- 13. M. TABATA, Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J. Math. Kyoto Univ., 18 (1978), 327-351. Zbl0391.65038MR495024
- 14. M. TABATA, -analysis of the finite element method, Lecture Notes in Num. Appl. Anal, 1 (1979) 25-62, Kinokuniya, Tokyo. Zbl0458.65096MR690436
- 15. M. TABATA, Some applications of the upwind finite element method, Theoretical and Applied Mechanics, 27 (1979), 277-282, Univ. of Tokyo Press, Tokyo.
Citations in EuDML Documents
top- Lutz Angermann, Numerical solution of second-order elliptic equations on plane domains
- Kazuo Ishihara, Finite element solutions for radiation cooling problems with nonlinear boundary conditions
- Katsushi Ohmori, Teruo Ushijima, A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.