Estimation d'erreur optimale et de type superconvergence de la méthode des éléments finis pour un problème aux limites, dégénéré
- Volume: 21, Issue: 1, page 27-61
- ISSN: 0764-583X
Access Full Article
topHow to cite
topEl Hatri, Mohamed. "Estimation d'erreur optimale et de type superconvergence de la méthode des éléments finis pour un problème aux limites, dégénéré." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.1 (1987): 27-61. <http://eudml.org/doc/193496>.
@article{ElHatri1987,
author = {El Hatri, Mohamed},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite elements methods; optimal error estimates; Sobolev spaces; Superconvergence; gradient},
language = {fre},
number = {1},
pages = {27-61},
publisher = {Dunod},
title = {Estimation d'erreur optimale et de type superconvergence de la méthode des éléments finis pour un problème aux limites, dégénéré},
url = {http://eudml.org/doc/193496},
volume = {21},
year = {1987},
}
TY - JOUR
AU - El Hatri, Mohamed
TI - Estimation d'erreur optimale et de type superconvergence de la méthode des éléments finis pour un problème aux limites, dégénéré
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 1
SP - 27
EP - 61
LA - fre
KW - finite elements methods; optimal error estimates; Sobolev spaces; Superconvergence; gradient
UR - http://eudml.org/doc/193496
ER -
References
top- [1] J. H. BRAMBLE, S. R. HILBERT, Estimation of linear functional on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970). Zbl0201.07803MR263214
- [2] J. H. BRAMBLE, S. R. HILBERT, Bounds for a class of linear functionals with application to Hermith interpolation. Numer. Math. 16 (1971). Zbl0214.41405MR290524
- [3] L. CERMAK, M. ZLAMAL, Transformation of dependant variables and the finite element method of nonlinear evolution equation. Inter. J. for Numer. Meth. in Enging. 15 (1980) 1. Zbl0444.65078MR554438
- [4] P. G. CIARLET, The finite element method for elliptic problem. North-Holland, 1976. Zbl0383.65058MR520174
- [5] T. DUPONT, R. SCOTT, Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34 (1980) 150. Zbl0423.65009MR559195
- [6] L. V. KANTOROVICH G. P. AKILOV, Analyse fonctionnelle, Izd. Nayka, 1981, tome 1 [en français]. Zbl0531.46001
- [7] M. KRIZEK, P. NEITAANMAKI, Superconvergence phenomenon in fïnite element method arising from averaging gradients. Numer. Math. 43 (1984). Zbl0575.65104MR761883
- [8] A. KUFNER, Weighted Sobolev spaces. Teubner-Texte Zun Mathematik, Bound 31, Leibnitz, 1980. Zbl0455.46034MR664599
- [9] L. A. OGANESSIAN, L. A. ROUKHOVETZ, Variational-difference method of solving elliptic problems. Erevan, 1979, pp. 252-281 [en russe].
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.