Quelques remarques sur les notions de rang convexité et de polyconvexité en dimensions 2 et 3
- Volume: 22, Issue: 1, page 5-28
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAubert, G.. "Quelques remarques sur les notions de $1-$rang convexité et de polyconvexité en dimensions 2 et 3." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.1 (1988): 5-28. <http://eudml.org/doc/193524>.
@article{Aubert1988,
author = {Aubert, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {strain energy functions; Necessary and sufficient conditions; two- and three-dimensional cases; Differential inequalities; isotropic rank-one convex functions},
language = {fre},
number = {1},
pages = {5-28},
publisher = {Dunod},
title = {Quelques remarques sur les notions de $1-$rang convexité et de polyconvexité en dimensions 2 et 3},
url = {http://eudml.org/doc/193524},
volume = {22},
year = {1988},
}
TY - JOUR
AU - Aubert, G.
TI - Quelques remarques sur les notions de $1-$rang convexité et de polyconvexité en dimensions 2 et 3
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 1
SP - 5
EP - 28
LA - fre
KW - strain energy functions; Necessary and sufficient conditions; two- and three-dimensional cases; Differential inequalities; isotropic rank-one convex functions
UR - http://eudml.org/doc/193524
ER -
References
top- [1] J BALL, Existence theorems in nonhnear elasticity, Arch Rational Mechnal , (1976), 337-403 Zbl0368.73040MR475169
- [2] P G CIARLET, Quelques remarquessur des problèmes d'existence en élasticiténon lineaire, Rapport INRIA (1983) Zbl0516.73019
- [3] P G CIARLET, G GEYMONAT, Sur les lois de comportement en élasticité nonP G CIARLET, G lineaire compressible, C R Acad Sa Pans, serie A (1982), 423-426 Zbl0497.73017MR695540
- [4] P G CIARLET, J NECAS, Unilatéral problems in nonhnear three-dimensionalelasticity, Publications du Laboratoire d'Analyse Numérique Université deans VI (1984) Zbl0557.73009
- [5] G STRANG, The polyconvexificaüon of F (Vu), Research Report CM A-RO, 9-3 of the Austrahan National Umversity
- [6] R V KOHN, G STRANG, Exphcit relaxation of a vanationalproblem in optimaldesign, to appear m Bull Amer Math Soc
- [7] BUSEMANN, SHEFHARD, Convexity on non convex sets, Proc Coll on onvexity, Copenhagen (1965) Zbl0152.39404
- [8] KNOWLES, STERNBERG, On the failure of ellipticity of the équations for finiteelastostatic plane strain, , Arch Rational Mech (1976), 321-336 Zbl0351.73061
- [9] G AUBERT, R TAHRAOUI, Sur la faible fermeture de certains ensembles decontrainte en élasticité non lineaire plane, , C R Acad Sci Paris, serie A (1980),37-540, et a paraître dans Arch Rational Mech Zbl0434.35021MR573804
- [10] G. AUBERT, R. TAHRAOUI, Conditions nécessaires de faible fermeture et de 1-rang convexité en dimension 3. Rendiconti del Circolo Matematico di Palermo, Série II, T34, (1985). Zbl0647.73017MR848122
- [11] C.B. Jr., MORREY, Multiple intégrais in the calculus of variations, Springer, Berlin, 1966. Zbl0142.38701MR202511
- [12] P. MARCELLINI, Quasicovex quadratic forms in two dimensions, Applied. Math. Optimiz., 11 (1984), 183-189. Zbl0567.49007MR743926
- [13] F.J. TERPSTRA, Die darstellung biquadratischer formen als summen von quadraten mit anwendung auf die variations rechung, Math. Ann., 116 (1938), 166-180. Zbl0019.35203MR1513223
- [14] D. SERRE, Formes quadratiques et calcul des variations, J. Math. Pures App., 62 (1983), 177-196. Zbl0529.49005MR713395
- [15] B. DACOROGNA, Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1. Preprint de EPFL, Lausanne (1985), et à paraître dans J. Math. Pures Appl. Zbl0609.49007MR839729
- [16] J. BALL, Differentiability properties of symmetric and isotropic functions, Duke Math. J., vol. 51, n° 3, (1984), 699-728. Zbl0566.73001MR757959
- [17] H. C. SIMPSON S. J. SPECTOR, On copositive matrices and strong ellipticity for isotropic materials, Arch. Rational. Mech. Anal (1983), 55-68. Zbl0526.73026MR713118
- [18] E.L. GURVICH A. I. LURIE, Meckaniki Tverdogotela, (1980), 110-116.
- [19] G. AUBERT, On a counterexample of a rank 1 convex function which is not polyconvex in the case n = 2, à paraître.
- [20] R. TEMAN, A characterization of quasi-convex functions, Applied Mathematics and Optimization, 8 (1982), 287-291. Zbl0501.49008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.