Quelques remarques sur les notions de 1 - rang convexité et de polyconvexité en dimensions 2 et 3

G. Aubert

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 1, page 5-28
  • ISSN: 0764-583X

How to cite

top

Aubert, G.. "Quelques remarques sur les notions de $1-$rang convexité et de polyconvexité en dimensions 2 et 3." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.1 (1988): 5-28. <http://eudml.org/doc/193524>.

@article{Aubert1988,
author = {Aubert, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {strain energy functions; Necessary and sufficient conditions; two- and three-dimensional cases; Differential inequalities; isotropic rank-one convex functions},
language = {fre},
number = {1},
pages = {5-28},
publisher = {Dunod},
title = {Quelques remarques sur les notions de $1-$rang convexité et de polyconvexité en dimensions 2 et 3},
url = {http://eudml.org/doc/193524},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Aubert, G.
TI - Quelques remarques sur les notions de $1-$rang convexité et de polyconvexité en dimensions 2 et 3
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 1
SP - 5
EP - 28
LA - fre
KW - strain energy functions; Necessary and sufficient conditions; two- and three-dimensional cases; Differential inequalities; isotropic rank-one convex functions
UR - http://eudml.org/doc/193524
ER -

References

top
  1. [1] J BALL, Existence theorems in nonhnear elasticity, Arch Rational Mechnal , (1976), 337-403 Zbl0368.73040MR475169
  2. [2] P G CIARLET, Quelques remarquessur des problèmes d'existence en élasticiténon lineaire, Rapport INRIA (1983) Zbl0516.73019
  3. [3] P G CIARLET, G GEYMONAT, Sur les lois de comportement en élasticité nonP G CIARLET, G lineaire compressible, C R Acad Sa Pans, serie A (1982), 423-426 Zbl0497.73017MR695540
  4. [4] P G CIARLET, J NECAS, Unilatéral problems in nonhnear three-dimensionalelasticity, Publications du Laboratoire d'Analyse Numérique Université deans VI (1984) Zbl0557.73009
  5. [5] G STRANG, The polyconvexificaüon of F (Vu), Research Report CM A-RO, 9-3 of the Austrahan National Umversity 
  6. [6] R V KOHN, G STRANG, Exphcit relaxation of a vanationalproblem in optimaldesign, to appear m Bull Amer Math Soc 
  7. [7] BUSEMANN, SHEFHARD, Convexity on non convex sets, Proc Coll on onvexity, Copenhagen (1965) Zbl0152.39404
  8. [8] KNOWLES, STERNBERG, On the failure of ellipticity of the équations for finiteelastostatic plane strain, , Arch Rational Mech (1976), 321-336 Zbl0351.73061
  9. [9] G AUBERT, R TAHRAOUI, Sur la faible fermeture de certains ensembles decontrainte en élasticité non lineaire plane, , C R Acad Sci Paris, serie A (1980),37-540, et a paraître dans Arch Rational Mech Zbl0434.35021MR573804
  10. [10] G. AUBERT, R. TAHRAOUI, Conditions nécessaires de faible fermeture et de 1-rang convexité en dimension 3. Rendiconti del Circolo Matematico di Palermo, Série II, T34, (1985). Zbl0647.73017MR848122
  11. [11] C.B. Jr., MORREY, Multiple intégrais in the calculus of variations, Springer, Berlin, 1966. Zbl0142.38701MR202511
  12. [12] P. MARCELLINI, Quasicovex quadratic forms in two dimensions, Applied. Math. Optimiz., 11 (1984), 183-189. Zbl0567.49007MR743926
  13. [13] F.J. TERPSTRA, Die darstellung biquadratischer formen als summen von quadraten mit anwendung auf die variations rechung, Math. Ann., 116 (1938), 166-180. Zbl0019.35203MR1513223
  14. [14] D. SERRE, Formes quadratiques et calcul des variations, J. Math. Pures App., 62 (1983), 177-196. Zbl0529.49005MR713395
  15. [15] B. DACOROGNA, Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1. Preprint de EPFL, Lausanne (1985), et à paraître dans J. Math. Pures Appl. Zbl0609.49007MR839729
  16. [16] J. BALL, Differentiability properties of symmetric and isotropic functions, Duke Math. J., vol. 51, n° 3, (1984), 699-728. Zbl0566.73001MR757959
  17. [17] H. C. SIMPSON S. J. SPECTOR, On copositive matrices and strong ellipticity for isotropic materials, Arch. Rational. Mech. Anal (1983), 55-68. Zbl0526.73026MR713118
  18. [18] E.L. GURVICH A. I. LURIE, Meckaniki Tverdogotela, (1980), 110-116. 
  19. [19] G. AUBERT, On a counterexample of a rank 1 convex function which is not polyconvex in the case n = 2, à paraître. 
  20. [20] R. TEMAN, A characterization of quasi-convex functions, Applied Mathematics and Optimization, 8 (1982), 287-291. Zbl0501.49008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.