On the application of mixed finite element methods to the wave equations

Tunc Geveci

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 2, page 243-250
  • ISSN: 0764-583X

How to cite

top

Geveci, Tunc. "On the application of mixed finite element methods to the wave equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.2 (1988): 243-250. <http://eudml.org/doc/193529>.

@article{Geveci1988,
author = {Geveci, Tunc},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed finite element methods; convergence; semi-discrete approximations; wave equation; Raviart-Thomas space; system; implicit Euler method},
language = {eng},
number = {2},
pages = {243-250},
publisher = {Dunod},
title = {On the application of mixed finite element methods to the wave equations},
url = {http://eudml.org/doc/193529},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Geveci, Tunc
TI - On the application of mixed finite element methods to the wave equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 2
SP - 243
EP - 250
LA - eng
KW - mixed finite element methods; convergence; semi-discrete approximations; wave equation; Raviart-Thomas space; system; implicit Euler method
UR - http://eudml.org/doc/193529
ER -

References

top
  1. [1] R. ALEX ANDER, Diagonally implicity Runge-Kutta methods for stiff O.D.E.'s, SIAM J. Numer. Anal. 14 (1977), 1006-1021. Zbl0374.65038MR458890
  2. [2] D. N. ARNOLD and F. BREZZI, Mixed and non conforming finite elementmethods: Implementation, postprocessing and error estimates, R.A.R.O. Math. Model, and Num. Anal. (M2AN) 1 (1985), 7-32. Zbl0567.65078MR813687
  3. [3] D. N. ARNOLD, J. DOUGLAS, Jr., and C. P. GUPTA, A family of higher ordermixed finite element methods for plane elasticity, Numer. Math. 45 (1984), 1-22. Zbl0558.73066MR761879
  4. [4] G. A. BAKER and J. H. BRAMBLE, Semidiscrete and single step fully discreteapproximations for second order hyperbolic equations, R.A.I.R.O. Anal. Num. 13 (1979), 75-100. Zbl0405.65057MR533876
  5. [5] B. BRENNER, M. CROUZEIX and V. THOMÉE, Single step methods for inhomogeneous linear differential equations in Banach spaces, R.A.I.R.O. Anal. Num. 16 (1982), 5-26. Zbl0477.65040MR648742
  6. [6] F. BREZZI, J. DOUGLAS Jr. and L. D MARINI, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. Zbl0599.65072MR799685
  7. [7] K. BURRAGE, Efficiently implementable algebraically stable Runge-Kutta methods, SIAM J. Numer. Anal. 19 (1982), 245-258. Zbl0483.65040MR650049
  8. [8] M. CROUZEIX, Sur l'approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, thèse, Paris (1975). 
  9. [9] M. CROUZEIX and P.-A. RAVIART, Approximation des problèmes d'évolution, preprint, Université de Rennes (1980). 
  10. [10] V. DOUGALIS and S.M. SERBIN, One some unconditionally stable, higher order methods for numerical solution of the structural dynamics equations, Int. J. Num. Meth. Eng. 18 (1982), 1613-1621. Zbl0488.73087MR680513
  11. [11] E. GEKELER, Discretization Methods for Stable Initial Value Problems, Springer Lecture Notes in Mathematics 1044 (1984), Springer-Verlag, Berlin, Heidelberg, New York. Zbl0518.65050MR731695
  12. [12] C. JOHNSON and V. THOMÉE, Error estimates for some mixed finite element methodes for parabolic type problems, R.A.I.R.O. Anal. Num. 15 (1981), 41-78. Zbl0476.65074MR610597
  13. [13] P.-A., RAVIART and J.M. THOMAS, A mixed finite element method for 2nd order problems, in Mathematical Aspects of the Element Method, Springer Lecture Notes in Mathematics 606 (1977), Springer-Verlag, Berlin-Heidelberg-New York. Zbl0362.65089MR483555

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.