# Two Families of Mixed Finite Elements for Second Order Elliptic Problems.

F. Brezzi; J., Jr. Douglas; L.D. Marini

Numerische Mathematik (1985)

- Volume: 47, page 217-236
- ISSN: 0029-599X; 0945-3245/e

## Access Full Article

top## How to cite

topBrezzi, F., Douglas, J., Jr., and Marini, L.D.. "Two Families of Mixed Finite Elements for Second Order Elliptic Problems.." Numerische Mathematik 47 (1985): 217-236. <http://eudml.org/doc/133032>.

@article{Brezzi1985,

author = {Brezzi, F., Douglas, J., Jr., Marini, L.D.},

journal = {Numerische Mathematik},

keywords = {mixed finite elements; asymptotic errors; Raviart-Thomas-Nedelec spaces; computational efficiency},

pages = {217-236},

title = {Two Families of Mixed Finite Elements for Second Order Elliptic Problems.},

url = {http://eudml.org/doc/133032},

volume = {47},

year = {1985},

}

TY - JOUR

AU - Brezzi, F.

AU - Douglas, J., Jr.

AU - Marini, L.D.

TI - Two Families of Mixed Finite Elements for Second Order Elliptic Problems.

JO - Numerische Mathematik

PY - 1985

VL - 47

SP - 217

EP - 236

KW - mixed finite elements; asymptotic errors; Raviart-Thomas-Nedelec spaces; computational efficiency

UR - http://eudml.org/doc/133032

ER -

## Citations in EuDML Documents

top- Adrian J. Lew, Matteo Negri, Optimal convergence of a discontinuous-Galerkin-based immersed boundary method
- Adrian J. Lew, Matteo Negri, Optimal convergence of a discontinuous-Galerkin-based immersed boundary method
- M. R. Swager, Y. C. Zhou, Genetic Exponentially Fitted Method for Solving Multi-dimensional Drift-diffusion Equations
- Lourenco Beirão Da Veiga, A mimetic discretization method for linear elasticity
- Zhangxin Chen, Analysis of mixed methods using conforming and nonconforming finite element methods
- Juan Enrique Santos, Ernesto Jorge Oreña, Elastic wave propagation in fluid-saturated porous media. Part II. The Galerkin procedures
- P. Peisker, D. Braess, Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates
- Gabriel N. Gatica, Analysis of a new augmented mixed finite element method for linear elasticity allowing ${\mathrm{\mathbb{R}\mathbb{T}}}_{0}$-${\mathbb{P}}_{1}$-${\mathbb{P}}_{0}$ approximations
- Zhangxin Chen, Expanded mixed finite element methods for quasilinear second order elliptic problems, II
- Jason S. Howell, Noel J. Walkington, Dual-mixed finite element methods for the Navier-Stokes equations

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.