Uniform in ε discretization error estimates for convection dominated convection-diffusion problems

G. Lube

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 3, page 477-498
  • ISSN: 0764-583X

How to cite

top

Lube, G.. "Uniform in $\varepsilon $ discretization error estimates for convection dominated convection-diffusion problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.3 (1988): 477-498. <http://eudml.org/doc/193539>.

@article{Lube1988,
author = {Lube, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {streamline diffusion method; discretization error estimates; convection dominated convection-diffusion problems; Galerkin finite element methods},
language = {eng},
number = {3},
pages = {477-498},
publisher = {Dunod},
title = {Uniform in $\varepsilon $ discretization error estimates for convection dominated convection-diffusion problems},
url = {http://eudml.org/doc/193539},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Lube, G.
TI - Uniform in $\varepsilon $ discretization error estimates for convection dominated convection-diffusion problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 3
SP - 477
EP - 498
LA - eng
KW - streamline diffusion method; discretization error estimates; convection dominated convection-diffusion problems; Galerkin finite element methods
UR - http://eudml.org/doc/193539
ER -

References

top
  1. [1] O. AXELSSON, Stability and error estimates of Galerkin finite element approximations for convection-diffusion equations, I.M.A. Journal Num. Anal., 1 (1981), 329-345 Zbl0508.76069MR641313
  2. [2] O. AXELSSON, On the numerical solution of convection dominated convection-diffusion problems, in : Proc. Tagung Math. Physik, Karl-Marx-Stadt 1983,Teubner-Texte, Leipzig 1984. Zbl0563.76084MR781752
  3. [3] C. BARDOS, J. RAUCH, Maximal positive boundary value problems as limits of singular perturbations problems, Transact. Amer. Math. Soc, 270 (1982) 2,377-400. Zbl0485.35010MR645322
  4. [4] A. DEVINATZ, R. ELLIS, A. FRIEDMAN , The asymptotic behaviour of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives II. Indiana Univ. Math. J., 23 (1974), 991-1011. Zbl0263.35026MR344709
  5. [5] A. FELGENHAUER, Application of a generalized maximum principle to estimate the corner layers in the n-dimensional case, in : Singularly perturbed differential equations and applications (J. Förste ed.), Akademie der Wissenschaften der DDR, Inst. f. Math., Report R-Mech 03/84, Berlin 1984, 1-8. 
  6. [6] M. B. GILLES, M. E. ROSE, A numerical study of the steady scalar convective diffusion equation for small viscosity, J. Comput. Phys. 56 (1984), 513-529. Zbl0572.76087MR768674
  7. [7] H. GOERING, A. FELGENHAUER, G. LUBE, H. G. ROOS, L. TOBISKA, Singularly perturbed differential equations, Math. Research, v. 13, Akademie-Verlag Berlin 1983. Zbl0522.35003MR718115
  8. [8] T. J. R. HUGHES, A. BROOKS, multidimensional upwind scheme with no crosswind diffusion, in : AMD v. 34, Finite element methods for convection dominated flows (T. J. R. Hughes ed.), ASME, New York, 1979. Zbl0423.76067MR571679
  9. [9] K. W. JEMELJANOV, On a difference scheme for the équation ε Δ u + a u x 1 = f , in : Difference methods for solving boundary value problems containing a small parameter and discontinuous boundary conditions, Isd. Uralskovo nacn. centra AN SSSR, Swerdlowsk 1976, 19-37 (russ.). 
  10. [10] C. JOHNSON, U. NÄVERT, J. PITKARANTA, Finite element methods for linear hyperbolic problems, Comp. Meth. Appl. Mech. Engrg. 45 (1984), 285-312. Zbl0526.76087MR759811
  11. [11] R. B. KELLOGG, Analysis of a difference approximation for a singular perturbation problem in two dimensions, in : Proc. Conf. Boundary and interior layers - computational and asymptotic methods (J. J. H. Miller ed.), Dublin 1980, Boole Press 1980, 113-117. Zbl0439.65081MR589355
  12. [12] J. J. H. MILLER, On the convergence, uniformly in ε , of difference schemes for a two point boundary value problem, in : Numerical analysis of singular perturbation problems (P. W. Hemker and J. J. H. Miller, eds.), Academic Press, London, New York, San Francisco 1979, 467-474. Zbl0419.65051MR556537
  13. [13] A. MIZUKAMI, T. J. R. HUGHES, A Petrov-Galerkin finite element method for solving convection dominated flows : an accurate upwinding technique for satisfying the maximum principle, Comp. Meth. Appl. Mech. Engrg. 50 (1985),181-193. Zbl0553.76075MR802339
  14. [14] U. NÄVERT, A finite element method for convection-diffusion problems, Thesis, Chalmers Univ. of Technol., Gothenburg, Sweden 1982. 
  15. [15] K. NIIJIMA, On a three-point difference scheme for a singular perturbation problem without a first derivative term, Mem. Num. Math. 7 (1980). Zbl0484.65054MR588462
  16. [16] M. H. PROTTER, H. F. WEINBERGER, Maximum principles in differential equations, Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1967. Zbl0153.13602MR219861
  17. [17] U. RISCH, Ein hybrides upwind-FEM-Verfahren und dessen Anwendung auf schwach gekoppelte elliptische Differentialgleichungen mit dominanter Konvektion, Dissertation, Techn. Hochschule Magdeburg 1986. 
  18. [18] A. M. SCHATZ, L. B. WAHLBIN, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimension, Math. Comp.40 (1983), 47-89. Zbl0518.65080MR679434
  19. [19] F. SCHIEWECK, Eine asymptotisch angepafite Finite-Element-Methode fur singulär gestörte elliptische Randwertaufgaben, Dissertation, Techn. Hochschule Magdeburg 1986. 
  20. [20] G. I. SHISHKIN, Solution of a boundary value problem for an elliptic equation with a small parameter affecting the highest derivatives, Shurnal Vytsch. Mat. Mat. Fis., 26 (1986), 1019-1031 (russ.). Zbl0622.65078MR851752
  21. [21] G. I. SHISHKIN, V. A. TITOV, A différence scheme for a differential equation with two small parameters affecting the derivatives, Numer. Meth. Mechs. Cont. Media, 7 (1976), 145-155. (russ.) MR455427

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.