Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations
- Volume: 23, Issue: 3, page 433-443
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGhidaglia, J. M.. "Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 433-443. <http://eudml.org/doc/193571>.
@article{Ghidaglia1989,
author = {Ghidaglia, J. M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear Schrödinger equation; finite-dimensional attractor},
language = {eng},
number = {3},
pages = {433-443},
publisher = {Dunod},
title = {Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations},
url = {http://eudml.org/doc/193571},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Ghidaglia, J. M.
TI - Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 433
EP - 443
LA - eng
KW - nonlinear Schrödinger equation; finite-dimensional attractor
UR - http://eudml.org/doc/193571
ER -
References
top- [1] J. E. BILLOTI and J. P. LA SALLE, Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971) 1082-1088. Zbl0274.34061MR284682
- [2] K. J. BLOW and N. J. DORAN, Global and local chaos in the pumped nonlinear Schrödinger equation, Physical Review Letters 52 (1984) 526-539.
- [3] P. CONSTANTIN, C. FOIAS and R. TEMAM, Attractors representing turbulent flows, Memoirs of A.M.S. 53 (1985) n° 314. Zbl0567.35070MR776345
- [4] J. M. GHIDAGLIA, Comportement de dimension finie pour les équations de Schrödinger non linéaires faiblement amorties, C.R. Acad. Sci. Paris, t. 305, Série I (1987) 291-294. Zbl0638.35020MR910362
- [5] J. M. GHIDAGLIA, Finite dimensional behavior for weakly damped driven Schrodinger equations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 5 (1988) 365-405. Zbl0659.35019MR963105
- [6] J. M. GHIDAGLIA, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical System in the long time, J. Diff. Equ. 74 (1988) 369-390. Zbl0668.35084MR952903
- [7] J. M. GHIDAGLIA and B. HÉRON, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Physica 28D (1987) 282-304. Zbl0623.58049MR914451
- [8] J. M. GHIDAGLIA and R. TEMAMAttractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl. 66 (1987) 282-304. Zbl0572.35071MR913856
- [9] K. NOZAKI and N. BEKKI, Low-dimensional chaos in a driven damped nonlinear Schrödinger equation, Physica 21D (1986) 381-393. Zbl0607.35017MR862265
- [10] N. LEVINSON, Transformation theory of nonlniear differential equations of the second order, Annals of Math. 45 (1944) 723-737. Zbl0061.18910MR11505
- V. E. ZAKHAROV and A. B. SHABAT, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972) 62-39. MR406174
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.