Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations

J. M. Ghidaglia

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 3, page 433-443
  • ISSN: 0764-583X

How to cite

top

Ghidaglia, J. M.. "Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 433-443. <http://eudml.org/doc/193571>.

@article{Ghidaglia1989,
author = {Ghidaglia, J. M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear Schrödinger equation; finite-dimensional attractor},
language = {eng},
number = {3},
pages = {433-443},
publisher = {Dunod},
title = {Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations},
url = {http://eudml.org/doc/193571},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Ghidaglia, J. M.
TI - Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 433
EP - 443
LA - eng
KW - nonlinear Schrödinger equation; finite-dimensional attractor
UR - http://eudml.org/doc/193571
ER -

References

top
  1. [1] J. E. BILLOTI and J. P. LA SALLE, Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971) 1082-1088. Zbl0274.34061MR284682
  2. [2] K. J. BLOW and N. J. DORAN, Global and local chaos in the pumped nonlinear Schrödinger equation, Physical Review Letters 52 (1984) 526-539. 
  3. [3] P. CONSTANTIN, C. FOIAS and R. TEMAM, Attractors representing turbulent flows, Memoirs of A.M.S. 53 (1985) n° 314. Zbl0567.35070MR776345
  4. [4] J. M. GHIDAGLIA, Comportement de dimension finie pour les équations de Schrödinger non linéaires faiblement amorties, C.R. Acad. Sci. Paris, t. 305, Série I (1987) 291-294. Zbl0638.35020MR910362
  5. [5] J. M. GHIDAGLIA, Finite dimensional behavior for weakly damped driven Schrodinger equations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 5 (1988) 365-405. Zbl0659.35019MR963105
  6. [6] J. M. GHIDAGLIA, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical System in the long time, J. Diff. Equ. 74 (1988) 369-390. Zbl0668.35084MR952903
  7. [7] J. M. GHIDAGLIA and B. HÉRON, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Physica 28D (1987) 282-304. Zbl0623.58049MR914451
  8. [8] J. M. GHIDAGLIA and R. TEMAMAttractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl. 66 (1987) 282-304. Zbl0572.35071MR913856
  9. [9] K. NOZAKI and N. BEKKI, Low-dimensional chaos in a driven damped nonlinear Schrödinger equation, Physica 21D (1986) 381-393. Zbl0607.35017MR862265
  10. [10] N. LEVINSON, Transformation theory of nonlniear differential equations of the second order, Annals of Math. 45 (1944) 723-737. Zbl0061.18910MR11505
  11. V. E. ZAKHAROV and A. B. SHABAT, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972) 62-39. MR406174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.