Finite dimensional behavior for weakly damped driven Schrödinger equations
Annales de l'I.H.P. Analyse non linéaire (1988)
- Volume: 5, Issue: 4, page 365-405
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGhidaglia, Jean-Michel. "Finite dimensional behavior for weakly damped driven Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 5.4 (1988): 365-405. <http://eudml.org/doc/78158>.
@article{Ghidaglia1988,
author = {Ghidaglia, Jean-Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {long time behavior; nonlinear Schrödinger equations; zero order dissipation; external force; attractor; uniform Lyapunov exponents},
language = {eng},
number = {4},
pages = {365-405},
publisher = {Gauthier-Villars},
title = {Finite dimensional behavior for weakly damped driven Schrödinger equations},
url = {http://eudml.org/doc/78158},
volume = {5},
year = {1988},
}
TY - JOUR
AU - Ghidaglia, Jean-Michel
TI - Finite dimensional behavior for weakly damped driven Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 4
SP - 365
EP - 405
LA - eng
KW - long time behavior; nonlinear Schrödinger equations; zero order dissipation; external force; attractor; uniform Lyapunov exponents
UR - http://eudml.org/doc/78158
ER -
References
top- [1] K.J. Blow and N.J. Doran, Global and Local Chaos in the Pumped Nonlinear Schrödinger Equation, Physical Review Letters, Vol. 52, No. 7, 1984, pp. 526-539.
- [2] N. Bourbaki, Espaces vectoriels topologiques, Masson, Paris, 1981. Zbl0482.46001MR633754
- [3] P. Constantin, C. Foias and R. Temam, Attractors Representing Turbulent Flows, Memoirs of A.M.S., Vol. 53, No. 314, 1985. Zbl0567.35070MR776345
- [4] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, 1966, pp. 34- 36. Interscience, New-York. Zbl0051.28802MR65391
- [5] A. Douady and J. Oesterlé, Dimension de Hausdorff des attracteurs. C.R. Acad. Sci. Paris, T. 290, Series A, 1980, pp. 1135-1138. Zbl0443.58016MR585918
- [6] J.M. Ghidaglia and B. Héron, Dimension of the Attractors Associated to the Ginzburg-Landau Partial Differential Equation, Physica, Vol. 28D, 1987, pp. 282- 304.. Zbl0623.58049MR914451
- [7] J.M. Ghidaglia and R. Temam, Attractors for Damped Nonlinear Hyperbolic Equations, J. Math. Pures Appl., T. 66, 1987, pp. 273-319. Zbl0572.35071MR913856
- [8] J.M. Ghidaglia and R. Temam, Regularity of the Solutions of Second Order Evolution Equations and Their Attractors, Annali della scuola Normale sup. di Pisa (in the Press). Zbl0666.35062
- [9] J.M. Ghidaglia and R. Temam, Periodic Dynamical System with Application to Sine Gordon Equations: Estimates on the Fractal Dimension of the Universal Attractor, Proceedings of the Boulder Conference, B. NICOLAENKO Ed., Contemporary Math., A.M.S., Providence (to appear). Zbl0688.58027MR1034498
- [10] R.T. Glassey, On the Blowing up of Solutions to the Cauchy Problem for Nonlinear Schrödinger Equations, J. Math. Phys., Vol. 18, No. 9, 1977, pp. 1794-1797. Zbl0372.35009MR460850
- [11] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Zbl0189.40603MR259693
- [12] J.L. Lions and E. Magenes, Nonhomogeneous Boundary value Problems and Applications, Springer, Berlin, 1972 (translated from Dunod, Paris, 1968). Zbl0165.10801
- [13] B. Maldelbrot, Fractals: Form, Chance and Dimension, Freeman, San Francisco, 1977. Zbl0376.28020MR471493
- [14] K. Nozaki and N. Bekki, Low-Dimensional Chaos in a Driven Damped Nonlinear Schrödinger Equation, Physica, Vol. 21D, 1986, pp. 381-393. Zbl0607.35017MR862265
- [15] I. Segal, Nonlinear Semi-Groups, Ann. Math., Vol. 78, 1963, pp. 339-364. Zbl0204.16004MR152908
- [16] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. Zbl0662.35001MR953967
- [17] M. Tsutsumi, Non Existence of Global Solutions to the Cauchy Problem for the Damped Nonlinear Schrödinger Equations, S.I.A.M. J. Math. Anal., Vol. 15, 1984, pp. 357-366. Zbl0539.35022MR731873
- [18] V.E. Zakharov and A.B. Shabat, Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media, J.E.P.P., Vol. 34, 1972, pp. 62-69. MR406174
- [19] J.M. Ghidaglia, Comportement de dimension finie pour les équations de Schrödinger non linéaires faiblement amorties, C.R. Acad. Sci. Paris, Series I, T. 305, 1987, pp. 291-294. Zbl0638.35020MR910362
- [20] J.M. Ghidaglia, Weekly Damped Forced Kortewegde Vries Equations Behave as a Finite Dimensional Dynamical System in the Long Time, J. Diff. Equ. (in the Press). Zbl0668.35084
Citations in EuDML Documents
top- J. M. Ghidaglia, Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations
- J. M. Ghidaglia, Estimation de la dimension des attracteurs associés à des équations aux dérivées partielles non linéaires d’évolution sur entier
- Amna Dabaa, Comportement asymptotique des solutions d’un système d’équations de Schrödinger-Poisson sur un domaine borné de
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.