Finite dimensional behavior for weakly damped driven Schrödinger equations

Jean-Michel Ghidaglia

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 4, page 365-405
  • ISSN: 0294-1449

How to cite

top

Ghidaglia, Jean-Michel. "Finite dimensional behavior for weakly damped driven Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 5.4 (1988): 365-405. <http://eudml.org/doc/78158>.

@article{Ghidaglia1988,
author = {Ghidaglia, Jean-Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {long time behavior; nonlinear Schrödinger equations; zero order dissipation; external force; attractor; uniform Lyapunov exponents},
language = {eng},
number = {4},
pages = {365-405},
publisher = {Gauthier-Villars},
title = {Finite dimensional behavior for weakly damped driven Schrödinger equations},
url = {http://eudml.org/doc/78158},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Ghidaglia, Jean-Michel
TI - Finite dimensional behavior for weakly damped driven Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 4
SP - 365
EP - 405
LA - eng
KW - long time behavior; nonlinear Schrödinger equations; zero order dissipation; external force; attractor; uniform Lyapunov exponents
UR - http://eudml.org/doc/78158
ER -

References

top
  1. [1] K.J. Blow and N.J. Doran, Global and Local Chaos in the Pumped Nonlinear Schrödinger Equation, Physical Review Letters, Vol. 52, No. 7, 1984, pp. 526-539. 
  2. [2] N. Bourbaki, Espaces vectoriels topologiques, Masson, Paris, 1981. Zbl0482.46001MR633754
  3. [3] P. Constantin, C. Foias and R. Temam, Attractors Representing Turbulent Flows, Memoirs of A.M.S., Vol. 53, No. 314, 1985. Zbl0567.35070MR776345
  4. [4] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, 1966, pp. 34- 36. Interscience, New-York. Zbl0051.28802MR65391
  5. [5] A. Douady and J. Oesterlé, Dimension de Hausdorff des attracteurs. C.R. Acad. Sci. Paris, T. 290, Series A, 1980, pp. 1135-1138. Zbl0443.58016MR585918
  6. [6] J.M. Ghidaglia and B. Héron, Dimension of the Attractors Associated to the Ginzburg-Landau Partial Differential Equation, Physica, Vol. 28D, 1987, pp. 282- 304.. Zbl0623.58049MR914451
  7. [7] J.M. Ghidaglia and R. Temam, Attractors for Damped Nonlinear Hyperbolic Equations, J. Math. Pures Appl., T. 66, 1987, pp. 273-319. Zbl0572.35071MR913856
  8. [8] J.M. Ghidaglia and R. Temam, Regularity of the Solutions of Second Order Evolution Equations and Their Attractors, Annali della scuola Normale sup. di Pisa (in the Press). Zbl0666.35062
  9. [9] J.M. Ghidaglia and R. Temam, Periodic Dynamical System with Application to Sine Gordon Equations: Estimates on the Fractal Dimension of the Universal Attractor, Proceedings of the Boulder Conference, B. NICOLAENKO Ed., Contemporary Math., A.M.S., Providence (to appear). Zbl0688.58027MR1034498
  10. [10] R.T. Glassey, On the Blowing up of Solutions to the Cauchy Problem for Nonlinear Schrödinger Equations, J. Math. Phys., Vol. 18, No. 9, 1977, pp. 1794-1797. Zbl0372.35009MR460850
  11. [11] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Zbl0189.40603MR259693
  12. [12] J.L. Lions and E. Magenes, Nonhomogeneous Boundary value Problems and Applications, Springer, Berlin, 1972 (translated from Dunod, Paris, 1968). Zbl0165.10801
  13. [13] B. Maldelbrot, Fractals: Form, Chance and Dimension, Freeman, San Francisco, 1977. Zbl0376.28020MR471493
  14. [14] K. Nozaki and N. Bekki, Low-Dimensional Chaos in a Driven Damped Nonlinear Schrödinger Equation, Physica, Vol. 21D, 1986, pp. 381-393. Zbl0607.35017MR862265
  15. [15] I. Segal, Nonlinear Semi-Groups, Ann. Math., Vol. 78, 1963, pp. 339-364. Zbl0204.16004MR152908
  16. [16] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. Zbl0662.35001MR953967
  17. [17] M. Tsutsumi, Non Existence of Global Solutions to the Cauchy Problem for the Damped Nonlinear Schrödinger Equations, S.I.A.M. J. Math. Anal., Vol. 15, 1984, pp. 357-366. Zbl0539.35022MR731873
  18. [18] V.E. Zakharov and A.B. Shabat, Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media, J.E.P.P., Vol. 34, 1972, pp. 62-69. MR406174
  19. [19] J.M. Ghidaglia, Comportement de dimension finie pour les équations de Schrödinger non linéaires faiblement amorties, C.R. Acad. Sci. Paris, Series I, T. 305, 1987, pp. 291-294. Zbl0638.35020MR910362
  20. [20] J.M. Ghidaglia, Weekly Damped Forced Kortewegde Vries Equations Behave as a Finite Dimensional Dynamical System in the Long Time, J. Diff. Equ. (in the Press). Zbl0668.35084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.