Induced trajectories and approximate inertial manifolds

Roger Temam

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 3, page 541-561
  • ISSN: 0764-583X

How to cite

top

Temam, Roger. "Induced trajectories and approximate inertial manifolds." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 541-561. <http://eudml.org/doc/193578>.

@article{Temam1989,
author = {Temam, Roger},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Navier-Stokes equation; approximate inertial manifolds; induced trajectories},
language = {eng},
number = {3},
pages = {541-561},
publisher = {Dunod},
title = {Induced trajectories and approximate inertial manifolds},
url = {http://eudml.org/doc/193578},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Temam, Roger
TI - Induced trajectories and approximate inertial manifolds
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 541
EP - 561
LA - eng
KW - Navier-Stokes equation; approximate inertial manifolds; induced trajectories
UR - http://eudml.org/doc/193578
ER -

References

top
  1. [CFNT1] P. CONSTANTIN, C. FOIAS, B. NICOLAENKO and R. TEMAM, Intergral Manifolds and Inertial Manifolds for dissipative partial differential equations, Springer-Verlag, New York, AMS vol. 70, 1988. Zbl0683.58002MR966192
  2. [CFNT2] P. CONSTANTIN, C. FOIAS, B. NICOLAENKO and R. TEMAM, Spectral Barriers and Inertial Manifolds for dissiparite partial differential equations, Preprint 8802, The Institute for Applied Mathematics and Scientific Computing, Bloomington, 1988. Zbl0701.35024
  3. [FMT] C. FOIAS, O. MANLEY and R. TEMAM, Sur l'interaction des petits et grands tourbillons dans les écoulements turbulents, C. R. Acad. Sc. Paris, Serie I, 305, 1987, 497-500. Zbl0624.76072MR916319
  4. and Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, Math. Mod. and Num. Anal. (M2AN), Math. Mod. and Num. Anal. (M2AN), 22, 1988, pp. 93-114. Zbl0663.76054MR934703
  5. [FNST] C. FOIAS, B. NICOLAENKO, G. SELL and R. TEMAM, Inertial Manifolds for the Kuramoto Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl., 64, 1988, pp. 197-226. Zbl0694.35028MR964170
  6. [FST] C. FOIAS, G. R. SELL and R. TEMAM, Inertial Manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73, 1988, pp 309-353. Zbl0643.58004MR943945
  7. [FST1] C. FOIAS, G. SELL and E. TITI, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, The Institute for Applied Mathematics and Scientific Computing, Bloomington, Preprint 8805. Zbl0692.35053MR1010966
  8. [M1] M. MARION, Approximate inertial manifolds for reaction-diffusion equations in high space dimension, Dynamics and Diff. Equ., to appear. Zbl0702.35127MR1010967
  9. [M2] M. MARION, in this volume. 
  10. [MpS] J. MALLET-PARET and G. R. SELL, Inertial manifolds for reaction-diffusion equations in higher space dimension, J. Amer. Math. Soc., 1, 1988, pp. 805-866. Zbl0674.35049MR943276
  11. [MT] M. MARION and R. TEMAM, Nonlinear Galerkin methods, SIAM J. of Num. Analysis., 26, 1989. Zbl0683.65083MR1014878
  12. [R] C. ROSIER, Thesis Universite Paris-Sud, Orsay, 1989. 
  13. [T1] R. TEMAM, Navier-Stokes Equations, 3rd revised edition, North-Holland, Amsterdam, 1984. MR769654
  14. [T2] R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM-CBMS, Philadelphia, 1984. Zbl0833.35110MR764933
  15. [T3] R. TEMAM, Infinite dimensional dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, AMS Vol. 68, 1988. Zbl0662.35001MR953967
  16. [T4] R. TEMAM, Variétés inertielles approximatives pour les équations de Navier-Stokes bidimensionnelles, C. R. Acad. Sci. Paris, 306, Serie II, 1988, pp 399-402. Zbl0638.76035MR979153
  17. [T1] E. S. TITI, Une variété approximante de l'attracteur universel des équations de Navier-Stokes non linéaires de dimension finie, C. R. Acad. Sc. Paris, 307, Serie I, 1988, pp. 383-385 Zbl0683.35073MR965803
  18. and, On approximate inertial manifolds to the 2D-Navier-Stokes equations MSI Preprint n° 88-119. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.