A continuity property for the inverse of Mañé's projection
Applications of Mathematics (1998)
- Volume: 43, Issue: 1, page 9-21
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSkalák, Zdeněk. "A continuity property for the inverse of Mañé's projection." Applications of Mathematics 43.1 (1998): 9-21. <http://eudml.org/doc/32994>.
@article{Skalák1998,
abstract = {Let $X$ be a compact subset of a separable Hilbert space $H$ with finite fractal dimension $d_F(X)$, and $P_0$ an orthogonal projection in $H$ of rank greater than or equal to $2d_F(X)+1$. For every $\delta >0$, there exists an orthogonal projection $P$ in $H$ of the same rank as $P_0$, which is injective when restricted to $X$ and such that $\Vert P-P_0 \Vert <\delta $. This result follows from Mañé’s paper. Thus the inverse $(P \vert _X)^\{-1\}$ of the restricted mapping $P \vert _X\:X\rightarrow PX$ is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s projection $(P \vert _X)^\{-1\}$. It is known that when $H$ is finite dimensional then $(P \vert _X)^\{-1\}$ is Hölder continuous. In this paper we shall prove that if $X$ is a global attractor of an infinite dimensional dissipative evolutionary equation then in some cases (e.g. two-dimensional Navier-Stokes equations with homogeneous Dirichlet boundary conditions) $\Vert ~ x-y~\Vert \cdot \ln \ln \frac\{1\}\{\gamma \Vert Px-Py \Vert \}\le 1$ for every $x,y \in X$ such that $\Vert Px-Py \Vert \le \frac\{1\}\{\gamma \mathrm \{e\}^\{\mathrm \{e\}\}\}$, where $\gamma $ is a positive constant.},
author = {Skalák, Zdeněk},
journal = {Applications of Mathematics},
keywords = {dissipative evolutionary equations; Navier-Stokes equations; attractors; Mañé’s projection; fractal dimension; dissipative evolution equations; attractors; Mañé’s projection; fractal dimension; Navier-Stokes equations},
language = {eng},
number = {1},
pages = {9-21},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A continuity property for the inverse of Mañé's projection},
url = {http://eudml.org/doc/32994},
volume = {43},
year = {1998},
}
TY - JOUR
AU - Skalák, Zdeněk
TI - A continuity property for the inverse of Mañé's projection
JO - Applications of Mathematics
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 1
SP - 9
EP - 21
AB - Let $X$ be a compact subset of a separable Hilbert space $H$ with finite fractal dimension $d_F(X)$, and $P_0$ an orthogonal projection in $H$ of rank greater than or equal to $2d_F(X)+1$. For every $\delta >0$, there exists an orthogonal projection $P$ in $H$ of the same rank as $P_0$, which is injective when restricted to $X$ and such that $\Vert P-P_0 \Vert <\delta $. This result follows from Mañé’s paper. Thus the inverse $(P \vert _X)^{-1}$ of the restricted mapping $P \vert _X\:X\rightarrow PX$ is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s projection $(P \vert _X)^{-1}$. It is known that when $H$ is finite dimensional then $(P \vert _X)^{-1}$ is Hölder continuous. In this paper we shall prove that if $X$ is a global attractor of an infinite dimensional dissipative evolutionary equation then in some cases (e.g. two-dimensional Navier-Stokes equations with homogeneous Dirichlet boundary conditions) $\Vert ~ x-y~\Vert \cdot \ln \ln \frac{1}{\gamma \Vert Px-Py \Vert }\le 1$ for every $x,y \in X$ such that $\Vert Px-Py \Vert \le \frac{1}{\gamma \mathrm {e}^{\mathrm {e}}}$, where $\gamma $ is a positive constant.
LA - eng
KW - dissipative evolutionary equations; Navier-Stokes equations; attractors; Mañé’s projection; fractal dimension; dissipative evolution equations; attractors; Mañé’s projection; fractal dimension; Navier-Stokes equations
UR - http://eudml.org/doc/32994
ER -
References
top- Hölder continuity for the inverse of Mañé’s projection, J. Math. Anal. Appl. vol. 178, 1993, pp. 22–29. (1993) MR1231724
- 10.1002/cpa.3160380102, Comm. Pure Appl. Math. vol. 38, 1985, pp. 1–27. (1985) MR0768102DOI10.1002/cpa.3160380102
- 10.1017/S0022112085000209, J. Fluid. Mech. vol. 150, 1985, pp. 427–440. (1985) MR0794051DOI10.1017/S0022112085000209
- Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer-Verlag, New-York, 1989. (1989) MR0966192
- Spectral barriers and inertial manifolds for dissipative partial differential equations, J. Dyn. Diff. Equ. vol. 1, 1989, pp. 45–73. (1989) MR1010960
- Attractors representing turbulent flows, Mem. Amer. Math. Soc. vol. 53, 1985, pp. 1–67. (1985) MR0776345
- [unknown], J. Math. Pures Appl. vol. 73, 1994, pp. 489–522. (1994) MR1300986
- Exponential attractors and their relevance to fluid dynamics systems, Phys. vol. D 63, 1993, pp. 350–360. (1993) MR1210011
- Local and global Lyapunov exponents, J.Dyn.Diff.Equ. vol. 3, 1991, pp. 133–177. (1991) MR1094726
- Construction of inertial manifolds by elliptic regularization, J. Differential Equations vol. 89, 1991, pp. 355–387. (1991) MR1091482
- Approximate inertial manifolds and effective viscosity in turbulent flows, Phys. Fluids vol. A 3, 1991, pp. 898–911. (1991) MR1205478
- 10.1006/jmaa.1993.1326, J. Math. Anal. Appl. vol. 178, 1993, pp. 567–583. (1993) MR1238896DOI10.1006/jmaa.1993.1326
- 10.1051/m2an/1988220100931, Math. Mod. Numer. Anal. vol. 22, 1988, pp. 93–118. (1988) MR0934703DOI10.1051/m2an/1988220100931
- Inertial manifolds for the Kuramoto Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl. vol. 67, 1988, pp. 197–226. (1988) MR0964170
- Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations vol. 73, 1988, pp. 309–353. (1988) MR0943945
- Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dyn. Diff. Equ. vol. 1, 1989, pp. 199–244. (1989) MR1010966
- 10.1137/S0036141091224552, SIAM J. Math. Anal. vol. 25, 1994, pp. 1269–1302. (1994) MR1289139DOI10.1137/S0036141091224552
- 10.1137/0517080, SIAM J. Math. Anal. vol. 17, 1986, pp. 1139–1157. (1986) Zbl0626.35078MR0853521DOI10.1137/0517080
- 10.1137/S0036141092230428, SIAM J. Math. Anal. vol. 25, 1994, pp. 894–914. (1994) MR1271316DOI10.1137/S0036141092230428
- Finite-dimensional inertial forms for the 2D Navier-Stokes equations, Indiana Univ. Math. J. vol. 41, 1992, pp. 925–981. (1992) Zbl0765.35034MR1206337
- 10.1016/0168-9274(94)00021-2, Appl. Num. Math. vol. 15, 1994, pp. 219–246. (1994) MR1298243DOI10.1016/0168-9274(94)00021-2
- On the dimension of the compact invariant sets of certain non-linear maps. Lecture Notes in Math. 898 (1981), Springer-Verlag, New York, pp. 230–242. MR0654892
- 10.1137/0726063, SIAM J. Numer. Anal. vol. 26, 1989, pp. 1139–1157. (1989) MR1014878DOI10.1137/0726063
- Integral Geometry and Geometric Probability, Addison-Wesley, Reading, 1976. (1976) Zbl0342.53049MR0433364
- 10.1051/m2an/1989230305411, Math. Mod. Numer. Anal. vol. 23, 1989, pp. 541–561. (1989) Zbl0688.58036MR1014491DOI10.1051/m2an/1989230305411
- Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci. 68, Springer-Verlag, New-York, 1988. (1988) Zbl0662.35001MR0953967
- 10.1006/jfan.1993.1126, J. Funct. Anal. vol. 117, 1993, pp. 215–241. (1993) MR1240265DOI10.1006/jfan.1993.1126
- On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. Appl. vol. 149, 1990, pp. 540–557. (1990) Zbl0723.35063MR1057693
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.