On the optimal design of elastic shafts
- Volume: 23, Issue: 4, page 615-625
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGonzalez de Paz, Raul B.. "On the optimal design of elastic shafts." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.4 (1989): 615-625. <http://eudml.org/doc/193582>.
@article{GonzalezdePaz1989,
author = {Gonzalez de Paz, Raul B.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {minimization of a functional associated with shape of shaft; Maximal torsional rigidity; relaxation; duality; convex analysis techniques; existence},
language = {eng},
number = {4},
pages = {615-625},
publisher = {Dunod},
title = {On the optimal design of elastic shafts},
url = {http://eudml.org/doc/193582},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Gonzalez de Paz, Raul B.
TI - On the optimal design of elastic shafts
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 4
SP - 615
EP - 625
LA - eng
KW - minimization of a functional associated with shape of shaft; Maximal torsional rigidity; relaxation; duality; convex analysis techniques; existence
UR - http://eudml.org/doc/193582
ER -
References
top- [1] A. ACKER, A free boundary optimization problem. SIAM J. Math. Anal. 9(1978) pp.1179-1191. Zbl0335.31002MR512520
- [2] H. W. ALT and L. A. CAFARELLI, Existence and regularity for a minimum problem with free boundary. J. Reine u. Angew. Mathematik 325 (1981)pp. 104-144. Zbl0449.35105MR618549
- [3] N. V. BANICHUK, Problems and methods of optimal structural design. Plenum Press, London (1983). Zbl0649.73041MR715778
- [4] N. BOURBAKI, Espaces Vectoriels Topologiques, Hermann, Paris (1973).
- [5] Ch. CASTAING and M. VALADIER, Convex Analysis and Measurable Multifonctions. Lect. Notes in Math. no. 580, Springer-Verlag, New York (1977). Zbl0346.46038MR467310
- [6] J. CEA, Optimisation, théorie et algorithmes. Dunod, Paris (1971). Zbl0211.17402MR298892
- [7] J. CEA, Problems of shape optimal design in « Optimization of distributed parameter structures, NATO Proceedings » (Eds. Haug, E. J. and Cea, J. ). Sijthoff and Noordhoff (1981). Zbl0517.73096
- [8] J. CEA and K. MALANOWSKI, An example of a max-min problem in partial differential equations. SIAM J. Control and Optimization (1970) pp. 305-316. Zbl0204.46603MR274915
- [9] D. CHENAIS, On the exixtence of a solution in a domain identification problem, J. Math. Anal. and Appl. 52 (1975) pp. 189-219. Zbl0317.49005MR385666
- [10] I. EKELAND and R. TEMAM, Analyse convexe et problèmes variationels. Dunod, Paris (1974). Zbl0281.49001MR463993
- [11] Cl. GEBHARDT, Regularity of solutions of non-linear variational inequalities. Arch. Rat. Mech. and Anal. 52 (1973) pp. 383-393. Zbl0277.49003
- [12] D. GILBARG and N. TRUDINGER, Elliptic Partial Differential Aquations of second order. Springer, New York (1977). Zbl0361.35003MR473443
- [13] R. B. GONZALEZ DE PAZ, Sur un problème d'optimisation de domaine. Numer. Funct. Anal. and Optimiz. 5 (1982) pp. 173-197. Zbl0503.49017MR704111
- [14] B. KAWOHL, Geometrical properties of level sets of solutions to elliptic problems. Proc. Symp. in Pure Math. A.M.S. (1986), part 2, pp. 25-36. Zbl0597.35016MR843592
- [15] D. KINDERLEHRER and G. STAMPACCHIA, An introduction to variational inequalities and their applications. Academic Press, New York (1980). Zbl0457.35001MR567696
- [16] H. LANCHON, Torsion élastoplastique d'un arbre. J. de Mech. 13 (1974) pp. 367-318. Zbl0285.73020MR363107
- [17] J. J. MOREAU, Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles. Collèges de France (1966-67).
- [18] J. NEÇAS, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). MR227584
- [19] J. PIRONNEAU, Optimal shape design for elliptic systems. Springer-Verlag, New York (1984). Zbl0534.49001MR725856
- [20] G. POLYA and A. WEINSTEIN, On the torsional rigidity of multiply-connected cross sections. Ann. Math. 52 (1950) pp. 154-163. Zbl0038.37502MR40159
- [21] M. VALADIER, Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes. C. R. Acad. Sc. Paris, Serie A, 268, pp. 39-42 (janvier 1969). Zbl0164.43302MR241975
- [22] J. P. ZOLESIO, Domain variational formulation for free boundary problem, in « Optimization of distributed parameter structures. NATO-Proceedings » (Eds. Haug, E. J. and Cea. J.). Sijthoff and Noordhoff (1981). Zbl0537.35074MR690992
- [23] J. P. ZOLESIO, Indentification de domaines par déformation. Doctoral Thesis, Université de Nice (1979).
- [24] R. JENSEN, Boundary regularity for variational inequalities. Indiana Univ. Math. J. 29 (1980) pp. 495-511. Zbl0469.49008MR578201
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.