An upwind finite element method for singularly perturbed elliptic problems and local estimates in the L -norm

Uwe Risch

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 2, page 235-264
  • ISSN: 0764-583X

How to cite

top

Risch, Uwe. "An upwind finite element method for singularly perturbed elliptic problems and local estimates in the $L^\infty $-norm." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.2 (1990): 235-264. <http://eudml.org/doc/193596>.

@article{Risch1990,
author = {Risch, Uwe},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {cut-off-function-technique; hybrid upwind finite element method; singular perturbed 2-D elliptic problems; local estimates; boundary layers; three- direction grid; finite difference methods; order of convergence},
language = {eng},
number = {2},
pages = {235-264},
publisher = {Dunod},
title = {An upwind finite element method for singularly perturbed elliptic problems and local estimates in the $L^\infty $-norm},
url = {http://eudml.org/doc/193596},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Risch, Uwe
TI - An upwind finite element method for singularly perturbed elliptic problems and local estimates in the $L^\infty $-norm
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 2
SP - 235
EP - 264
LA - eng
KW - cut-off-function-technique; hybrid upwind finite element method; singular perturbed 2-D elliptic problems; local estimates; boundary layers; three- direction grid; finite difference methods; order of convergence
UR - http://eudml.org/doc/193596
ER -

References

top
  1. [1] P. G. CIARLET, P. A. RAVIART, Maximum principle and uniforme convergence for the finite element method, Comp. Math. Appl. Mech. Engrg. 2 (1973) 17-31. Zbl0251.65069MR375802
  2. [2] T. IKEDA, Maximum principle in finite element models for convection-diffusion phenomena, North-Holland Publ. Comp., Amsterdam 1983. Zbl0508.65049MR683102
  3. [3] C. JOHNSON, A. H. SCHATZ, L. B. WAHLBIN, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp. 49 (1987), 25-38. Zbl0629.65111MR890252
  4. [4] U. NÄVERT, A finite element method for convection-diffusion problems, Thés., Göteborg 1982. 
  5. [5] K. OHMORI, T. USHIJIMA, A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations, R.A.I.R.O. Anal. Numer. 18 (1984) 3, 309-322. Zbl0586.65080MR751761
  6. [6] U. RISCH, Ein hybrides upwind-FEM-Verfahren und dessen Anwendung auf schwach gekoppelte elliptische Differentialgleichuungssysteme mit dominanter Konvektion, Thes., Magdeburg 1986. 
  7. [7] A. H. SCHATZ, L. B. WAHLBIN, On the FEM for singularly perturbed reaction diffusion problems in 2D and 1D, Math. Comp. 40 (1983), 47-89. Zbl0518.65080MR679434
  8. [8] M. TABATA, Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J. Math. Kyoto Univ. 18 (1978), 327-351. Zbl0391.65038MR495024
  9. [9] L. TOBISKA, Diskretisierungsverfahren zur Lösung singulär gestörter Randwertprobleme, ZAMM 63 (1983), 115-123. Zbl0535.65058MR701842
  10. [10] H. YSERENTANT, Über die Maximumnormkonvergenz der Methode der finiten Elemente bei geringsten Regularitätsvoraussetzungen ZAMM 65 (1985) 2,91-100. Zbl0616.65103MR841262

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.