Training multi-layered neural network with a trust-region based algorithm
T. Pham Dinh; S. Wang; A. Yassine
- Volume: 24, Issue: 4, page 523-553
- ISSN: 0764-583X
Access Full Article
topHow to cite
topPham Dinh, T., Wang, S., and Yassine, A.. "Training multi-layered neural network with a trust-region based algorithm." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.4 (1990): 523-553. <http://eudml.org/doc/193605>.
@article{PhamDinh1990,
author = {Pham Dinh, T., Wang, S., Yassine, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {training a neural network; trust-region technique},
language = {eng},
number = {4},
pages = {523-553},
publisher = {Dunod},
title = {Training multi-layered neural network with a trust-region based algorithm},
url = {http://eudml.org/doc/193605},
volume = {24},
year = {1990},
}
TY - JOUR
AU - Pham Dinh, T.
AU - Wang, S.
AU - Yassine, A.
TI - Training multi-layered neural network with a trust-region based algorithm
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 4
SP - 523
EP - 553
LA - eng
KW - training a neural network; trust-region technique
UR - http://eudml.org/doc/193605
ER -
References
top- A. AUSLENDER (1976), Optimisation, méthodes numériques. Masson, Paris. Zbl0326.90057MR441204
- J. CEA (1971), Optimisation : Théories et algorithmes. Dunod. Zbl0211.17402MR298892
- A. R. CONN, N. GOULD & Ph. TOINT (1986), Testing a class of methods for solving minimization problems with simple bounds on the variables. Report n°86-3, University of Waterloo. Zbl0645.65033
- J. E. DENNIS, R. B. SCHNABEL (1983, Numerical methods for unconstrained optimization and nonlinear equations. Printice-Hall. Zbl0579.65058MR702023
- I. S. DUFF, J. NOCEDAL & J.K. REID (1987), The use linear programming for solutions of sparse sets of nonlinear equations. SIAM J. Sci. Stat. Comput. vol. 8, N° 2, pp. 99-108. Zbl0636.65053MR879405
- I. EKELAND & R. TEMAM (1974), Analyse Convexe et problèmes variationnels. Dunod, Gauthier-Villars. Zbl0281.49001MR463993
- R. FLETCHER (1980), Practical Methods of Optimization, vol. 1, John Wiley, New York. Zbl0439.93001MR585160
- F. FOGELMAN-SOULIE, P. GALLINARI, Y. LE CUN, S. THIRIA, (1987), Automata networks and artificial intelligence. In F. Fogelman-Soulie, Y. Robert, M. Tchuente (Eds.), Computing on automata networks, Manchester University Press. MR942907
- N. GASTINEL (1966), Analyse numérique linéaire. Hermann, Paris. Zbl0151.21202MR201053
- D. M. GAY (1981), Computing optimal constrained steps. SIAM J. Sci. Stat. Comput. 2, pp. 186-197. Zbl0467.65027MR622715
- P. E. GILL & W. MURRAY & (1972), Quasi-Newton methods for unconstrained optimization, The Journal of the Institute of Mathematics and its Applications, vol, 9, pp. 91-108. Zbl0264.49026MR300410
- P. E. GILL, W. MURRAY & M. H. WRIGHT (1981), Practical Optimization. Academie Press. Zbl0503.90062MR634376
- M. D. HEBDEN (1973), An algorithm for minimization using exact second derivatives. Atomic Energy Research Establishment report T.P. 515, Harwell, England.
- S. KANIEL & A. DAX (1979), A modified Newtons method for unconstrained minimization. SIAM J. Num. Anal., pp. 324-331. Zbl0403.65027MR526493
- P. LANCASTER (1969), Theory of Matrix. Academie Press, NewYork and London. Zbl0186.05301MR245579
- P. J. LAURENT (1972), Approximation et Optimisation. Hermann, Paris. Zbl0238.90058MR467080
- Y. LE CUN (1987), Modèles connectionnistes de l'apprentissage. Thèse de doctora, Université de Paris VI.
- MINOUX (1983), Programmation Mathématique. Tomel, Dunod. Zbl0546.90056
- M. MINSKY & S. PAPERT (1969), Perceptrons. Cambridge, MA : MIT Press.
- J. J. MORÉ (1978), The Levenberg-Marquart algorithm : implementation and theory. Lecture Notes in Mathematics 630, G. A. Waston, ed., Springer-Verlag, Berlin-Heidelberg-New York, pp. 105-116. Zbl0372.65022MR483445
- J. J. MORÉ (1983), Recent developments in algorithm and software for Trust Region Methods. Mathematical Programming, The State of the Art, Springer, Berlin, pp. 258-287. Zbl0546.90077MR717404
- J. J. MORÉ& D. C. SORENSEN (1979), On the use of directions of negative curvature in a modified Newton method. Math. Prog. 16, pp. 1-20. Zbl0394.90093MR517757
- J. J. MORÉ & D. C. SORENSEN (1981), Computing a trust region step. Argonne National Laboratory report, Argonne, Illinois. Zbl0551.65042
- H. MUKAI& E. POLAK (1978), A second order method for unconstrained optimization. J.O.T.A. vol. 26, pp. 501-513. Zbl0373.90068MR526650
- J. P. PENOT & A. ROGER, Updating the spectrum of a real matrix. Mathematics of Computation.
- M. J. D. POWELL (1975), Convergence properties of a class of minimization algorithms. O. L. Mangazarian, R. R. Meyer, S. M. Robinson Editors, Nonlinear prograrnming 2 pp. 1-27, Academic press, New York. Zbl0321.90045MR386270
- REINSCH (1967), Smoothing by spline functions. Numer. Math. 10, 177-183. Zbl0161.36203MR295532
- REINSCH (1971), Smoothing by spline functions II. Numer. Math. 16, 451-454. Zbl1248.65020MR1553981
- D. E. RHUMELHART & J. C. MCCLELLAND (1986) (Eds.), Parallel Distributed Processing. Cambridge, MA : MIT Press.
- F. ROBERT & S. WANG (1988), Implementation of a Neural Network on a Hypercube F.P.S. T20. Proceeding of IF1P WG 10.3 Working Conference on Parallel Processing. Pisa : Italy, 25-27 April. North-Holland.
- R. T. ROCKAFELLAR (1970), Convex Analysis. Princeton University Press, Princeton, New Jersey. Zbl0193.18401MR274683
- A. ROGER (1987), Mise à jour du spectre d'une matrice symétrique, Rapport de recherche SNEA (P), n° AR/87-970.
- S. ROUSSET, A. SCHREIBER & S. WANG (1988), Modélisation et simulation connexionniste de l'identification des visages en contexte. Le système FACENET RR 742 -M-. IMAG Grenoble.
- G. A. SHULTZ, R. B. SCHNABEL & R. H. BYRD (1985), A family of trust-regionbased algorithms for unconstrained minimization with strong global convergence properties. SIAM Journal on Numerical Analysis 22, pp. 47-67. Zbl0574.65061MR772882
- G. A. SHULTZ, R. B. SCHNABEL & R. H. BYRD (1988), Approximate solution of the trust region problem by minimization over two-dimensional subspaces Mathematical Programming. Vol. 40, pp. 247-263, North-Holland. Zbl0652.90082MR941311
- D. C. SORENSEN (1982), Newton's method with a model trust region modification. SIAM J. Numer. Anal. vol. 19, n°2, pp. 409-426. Zbl0483.65039MR650060
- G. W. STEWART (1973), Introduction to matrix computation. Academic Press, New York. Zbl0302.65021MR458818
- S. WANG (1988), Implementation of threshold automata networks with multilayers on a Hypercube F.P.S. T20. RR 725 -M-. IMAG, Grenoble.
- S. WANG, H. YÉ & F. ROBERT (1988), A PNML neural network for isolated words recognition. Proceedings of nEuro '88. First european conference on neural network, 6-9 Juin 1988 : Paris.
- Y. YUAN (1984), An example of only linear convergence of trust region algorithms for nonsmooth optimization. IMA Journal of Numerical Analysis 4, pp. 327-335. Zbl0555.65037MR752609
- Y. YUAN (1985), On the superlinear convergence of a trust region algorithm for nonsmooth optimization. Mathematical Programming, vol. 3, pp. 269-285. North-Holland. Zbl0577.90066MR783392
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.