Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision

Pham Dinh Tao; Thai Quynh Phong; Radu Horaud; Long Quan

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 1, page 57-90
  • ISSN: 0764-583X

How to cite

top

Pham Dinh Tao, et al. "Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.1 (1997): 57-90. <http://eudml.org/doc/193832>.

@article{PhamDinhTao1997,
author = {Pham Dinh Tao, Thai Quynh Phong, Horaud, Radu, Quan, Long},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {global minimization; nonconvex quadratic programming; global primal-dual algorithms; trust region methods; computer vision; nonlinear least squares},
language = {eng},
number = {1},
pages = {57-90},
publisher = {Dunod},
title = {Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision},
url = {http://eudml.org/doc/193832},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Pham Dinh Tao
AU - Thai Quynh Phong
AU - Horaud, Radu
AU - Quan, Long
TI - Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 1
SP - 57
EP - 90
LA - eng
KW - global minimization; nonconvex quadratic programming; global primal-dual algorithms; trust region methods; computer vision; nonlinear least squares
UR - http://eudml.org/doc/193832
ER -

References

top
  1. [1] J. R. CLERMONT, M. E. de LA LANDE, P. D. TAO and A. YASSINE, 1991, Analysis of plane and axisymmetric flows of incompressible fluids with the stream tube method : Numerical simulation by trust region algorithm, Inter. J. for Numer. Method in Fluids, 13, pp. 371-399. Zbl0739.76050MR1116654
  2. [2] J. R. CLERMONT, M. E. de LA LANDE, P. D. TAO and A. YASSINE, 1992, Numerical simulation of axisymmetric converging using stream tube and a trust region optimization algorithm, Engineering Optimization, 19, pp. 187-281. 
  3. [3] O. FAUGERAS, 1992, What can be seen in three dimensions with an uncalibrated stereo rig ? In G. Sandini, editor, Proccedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 563-578. Springer-Verlag, May. MR1263961
  4. [4] O. D. FAUGERAS, 1992, 3D Computer Vision, M.I.T. Press. 
  5. [5] O. D. FAUGERAS, Q. T. LUONG and S. J. MAYBANK, 1992, Camera Self-Calibration : Theory and Experiments, In G. Sandini, editor, Proceedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 321-334, Springer-Verlag, May. MR1263961
  6. [6] O. D. FAUGERAS and G. TOSCANI, 1987, Camera calibration for 3D computer vision, In Proceedings of International Workshop on Machine Vision and Machine Intelligence, Tokyo, Japan. 
  7. [7] R. FLETCHER, 1980, Practical methods of Optimization, John Wiley, New York. Zbl0439.93001MR955799
  8. [8] D. M. GAY, 1981, Computing optimal constrained steps, SIAM J. Sci. Stat. Comput., 2, pp. 186-197. Zbl0467.65027MR622715
  9. [9] G. H. GOLUB and C. VAN LOAN, 1989, Matrix Computations, North Oxford Academic, Oxford. Zbl0559.65011MR1002570
  10. [10] T. S. HUANG and O. D. FAUGERAS, 1989, Some properties of the E matrix en two-view motion estimation, IEEE Transactions on PAMI, 11(12), pp. 1310-1312, December. 
  11. [11] M. D. HEBDEN, 1973, An algorithm for minimization using exact second derivatives. Tech. Rep. TP515, Atomic energy research etablishment (AERE), Harwell, England. 
  12. [12] K. LEVENBERG, 1944, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2. Zbl0063.03501MR10666
  13. [13] P. J. LAURENT, 1972, Approximation et Optimisation, Hermann, Paris. Zbl0238.90058MR467080
  14. [14] D. W. MARQUARDT, 1963, An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11. Zbl0112.10505MR153071
  15. [15] J. J. MORÉ, 1978, The Levenberg-Marquardt algorithm : Implementation and theory. In G.A, Waston, editor, Lecture Notes in Mathematics 630, pp. 105-116. Springer-Verlag, Berlin-Heidelberg-New York. Zbl0372.65022MR483445
  16. [16] J. J. MORÉ, 1983, Recent developments in algorithm and software for trust region methods. In A.Bachem, M. Grötschel and B.Korte, editors, Mathematical Proramming, The state of the art, pp. 258-287. Springer-Verlag, Berlin. Zbl0546.90077MR717404
  17. [17] J. J. MORÉ and D. C. SORENSEN, 1981, Computing a trust region step, SIAM J. Sci. Statist. Comput., 4, pp. 553-572. Zbl0551.65042MR723110
  18. [18] R. MOHR, L. QUAN and F. VEILLON, Relative 3D Reconstruction using multiples uncalibrated images, The International Journal of Robotics Research, (to appear). 
  19. [19] R. T. ROCKAFELLAR, 1970, Convex Analysis, Princeton university Press, Princeton. Zbl0193.18401MR274683
  20. [20] G. A. SHULTZ, R. B. SCHNABEL and R. H. BYRD, 1985, A family of trust region based algorithms for unconstrained minimization with strong global convergence properties, SIAM J. on Numer. Anal., 22, pp. 47-67. Zbl0574.65061MR772882
  21. [21] T. Q. PHONG, R. HORAUD, P. D. TAO and A. YASSINE, Object Pose from 2-D to 3-D Point and Line Correspondences, International Journal of Computer Visions (to appear). 
  22. [22] D. C. SORESEN, 1982, Newton's method with a model trust region modification, SIAM J. Numer. Anal., 19(2), pp. 409-426, avril. Zbl0483.65039MR650060
  23. [23] PHAM DINH TAO, 1989, Méthodes numériques pour la minimisation d'une forme quadratique sur une boule euclidienne. Rapport de Recherche, Université Joseph Fourier, Grenoble. 
  24. [24] PHAM DINH TAO and LE THI HOAI AN, 1993, Minimisation d'une forme quadratique sur une boule et une sphère euclidiennes. Stabilité de la dualité lagrangienne. Optimalité globale. Méthodes numériques. Rapport de Recherche, LMI, CNRS URA 1378, INSA-Rouen. 
  25. [25] PHAM DINH TAO, LE THI HOAI AN and THAI QUYNH PHONG, Numerical methods for globally minimizing a quadratic form over euclidean ball an sphere (submitted). Zbl0858.90102
  26. [25] PHAM DINH TAO, S. WANG and A. YASSINE, 1990, Training multi-layered neural network with a trust region based algorithm, Math. Modell. Numer. Anal., 24 (4), pp. 523-553. Zbl0707.90097MR1070968

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.