Traveling waves in a cylinder rolling on a flat surface

Dvora Ross; Michel Bercovier

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 1, page 129-149
  • ISSN: 0764-583X

How to cite

top

Ross, Dvora, and Bercovier, Michel. "Traveling waves in a cylinder rolling on a flat surface." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.1 (1991): 129-149. <http://eudml.org/doc/193617>.

@article{Ross1991,
author = {Ross, Dvora, Bercovier, Michel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {radial deformation; infinite cylinder; deformed shape is constant in time; unilateral; existence; iterative method of solution; convergence; error-estimate},
language = {eng},
number = {1},
pages = {129-149},
publisher = {Dunod},
title = {Traveling waves in a cylinder rolling on a flat surface},
url = {http://eudml.org/doc/193617},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Ross, Dvora
AU - Bercovier, Michel
TI - Traveling waves in a cylinder rolling on a flat surface
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 1
SP - 129
EP - 149
LA - eng
KW - radial deformation; infinite cylinder; deformed shape is constant in time; unilateral; existence; iterative method of solution; convergence; error-estimate
UR - http://eudml.org/doc/193617
ER -

References

top
  1. [1] F. BREZZI, W. W. HAGER, P. A. RAVIART, Error Estimates for the Finite Element Solution of Variational Inequalities. Numer. Math, 28, 431-443 (1977). Zbl0369.65030MR448949
  2. [2] J. CÉA, Optimization : Théorie et Algorithmes. Dunod, Paris, 1971. Zbl0211.17402MR298892
  3. [3] P. G. CïARLET, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, 1978. Zbl0383.65058MR520174
  4. [4] A. FRIEDMAN, Variational Principles and Free Boundary Problems. JohnWiley & Sons, 1982. Zbl0564.49002MR679313
  5. [5] R. GLOWINSKI, J. L. LIONS, R. TRÉMOLIÈRE, Numerical Analysis of Variational Inequalities. North Holland Publishing Company, 1981. Zbl0463.65046MR635927
  6. [6] R. GLOWINSKI, Numerical Methods for Non-Linear Variational Problems. IRIA, Rocquencourt, 1979. 
  7. [7] J. J. KALKER, Survey of Wheel-Rail Rolling Contact Theory. Vehicie System Dynamics 5, 317-358 (1979). 
  8. [8] D. KlNDERLEHRER, G. STAMPACCHIA, An Introduction to Variational Inequalities and their Applications. Academie Press, New York, 1980. Zbl0457.35001MR567696
  9. [9] L. D. LANDAU, E. M. LIFSHITZ, Theory of Elasticity. Pergamon Press, London, 1959. MR106584
  10. [10] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  11. [11] J. L. LIONS, E. MAGENES, Problèmes aux limites non homogènes; Vol. 1, Dunod, Paris, 1968. Zbl0165.10801
  12. [12] J. T. ODEN, T. L. LIN, On The General Rolling Contact Problem for Finite Deformations of a Viscoelastic Cylinder. Comput. Math. Appl. Mech. Engrg. 57, 297-367 (1986). Zbl0582.73113MR858752
  13. [13] J. PADOVAN, S. TOVICHAKCHAIKUL, I. ZEID, Finite Element Analysis of Steadily Moving Contact Fields. Computers & Structures 18, 191-200 (1984). Zbl0523.73054
  14. [14] G. STRANG, G. FIX, An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973. Zbl0356.65096MR443377

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.