Traveling waves in a cylinder rolling on a flat surface
- Volume: 25, Issue: 1, page 129-149
- ISSN: 0764-583X
Access Full Article
topHow to cite
topRoss, Dvora, and Bercovier, Michel. "Traveling waves in a cylinder rolling on a flat surface." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.1 (1991): 129-149. <http://eudml.org/doc/193617>.
@article{Ross1991,
author = {Ross, Dvora, Bercovier, Michel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {radial deformation; infinite cylinder; deformed shape is constant in time; unilateral; existence; iterative method of solution; convergence; error-estimate},
language = {eng},
number = {1},
pages = {129-149},
publisher = {Dunod},
title = {Traveling waves in a cylinder rolling on a flat surface},
url = {http://eudml.org/doc/193617},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Ross, Dvora
AU - Bercovier, Michel
TI - Traveling waves in a cylinder rolling on a flat surface
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 1
SP - 129
EP - 149
LA - eng
KW - radial deformation; infinite cylinder; deformed shape is constant in time; unilateral; existence; iterative method of solution; convergence; error-estimate
UR - http://eudml.org/doc/193617
ER -
References
top- [1] F. BREZZI, W. W. HAGER, P. A. RAVIART, Error Estimates for the Finite Element Solution of Variational Inequalities. Numer. Math, 28, 431-443 (1977). Zbl0369.65030MR448949
- [2] J. CÉA, Optimization : Théorie et Algorithmes. Dunod, Paris, 1971. Zbl0211.17402MR298892
- [3] P. G. CïARLET, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, 1978. Zbl0383.65058MR520174
- [4] A. FRIEDMAN, Variational Principles and Free Boundary Problems. JohnWiley & Sons, 1982. Zbl0564.49002MR679313
- [5] R. GLOWINSKI, J. L. LIONS, R. TRÉMOLIÈRE, Numerical Analysis of Variational Inequalities. North Holland Publishing Company, 1981. Zbl0463.65046MR635927
- [6] R. GLOWINSKI, Numerical Methods for Non-Linear Variational Problems. IRIA, Rocquencourt, 1979.
- [7] J. J. KALKER, Survey of Wheel-Rail Rolling Contact Theory. Vehicie System Dynamics 5, 317-358 (1979).
- [8] D. KlNDERLEHRER, G. STAMPACCHIA, An Introduction to Variational Inequalities and their Applications. Academie Press, New York, 1980. Zbl0457.35001MR567696
- [9] L. D. LANDAU, E. M. LIFSHITZ, Theory of Elasticity. Pergamon Press, London, 1959. MR106584
- [10] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- [11] J. L. LIONS, E. MAGENES, Problèmes aux limites non homogènes; Vol. 1, Dunod, Paris, 1968. Zbl0165.10801
- [12] J. T. ODEN, T. L. LIN, On The General Rolling Contact Problem for Finite Deformations of a Viscoelastic Cylinder. Comput. Math. Appl. Mech. Engrg. 57, 297-367 (1986). Zbl0582.73113MR858752
- [13] J. PADOVAN, S. TOVICHAKCHAIKUL, I. ZEID, Finite Element Analysis of Steadily Moving Contact Fields. Computers & Structures 18, 191-200 (1984). Zbl0523.73054
- [14] G. STRANG, G. FIX, An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973. Zbl0356.65096MR443377
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.