Ajustement spline le long d'un ensemble de courbes

D. Apprato; R. Arcangéli

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 2, page 193-212
  • ISSN: 0764-583X

How to cite

top

Apprato, D., and Arcangéli, R.. "Ajustement spline le long d'un ensemble de courbes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.2 (1991): 193-212. <http://eudml.org/doc/193625>.

@article{Apprato1991,
author = {Apprato, D., Arcangéli, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {surface; smooth approximant; discrete smoothing spline; finite element space; Convergence; numerical results},
language = {fre},
number = {2},
pages = {193-212},
publisher = {Dunod},
title = {Ajustement spline le long d'un ensemble de courbes},
url = {http://eudml.org/doc/193625},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Apprato, D.
AU - Arcangéli, R.
TI - Ajustement spline le long d'un ensemble de courbes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 2
SP - 193
EP - 212
LA - fre
KW - surface; smooth approximant; discrete smoothing spline; finite element space; Convergence; numerical results
UR - http://eudml.org/doc/193625
ER -

References

top
  1. [1] D. APPRATO, R. ARCANGÉLI, R. MANZANILLA, Sur la construction de surfaces de classe Ck à partir d'un grand nombre de données de Lagrange M2AN,vol. 21, n°4, 529-555 (1987). Zbl0632.65011MR921826
  2. [2] R. ARCANGÉLI, Cours de DEA, Pau, à paraître. 
  3. [3] P.G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam (1978). Zbl0383.65058MR520174
  4. [4] P. G. CIARLET, P.-A. RAVIART, General Lagrange and Hermite Interpolationin Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., 46, 177-199 (1972). Zbl0243.41004MR336957
  5. [5] P. CLÉMENT, Approximation by Finite Element Functions Using Local Regularization, RAIRO, 9e année, R-2, 77-84 (1975). Zbl0368.65008MR400739
  6. [6] J. DUCHON, Splines Minimizing Rotation-Invariant Semi-Norms in Sobolev Spaces, Lecture Notes in Math., 571, 85-100, Springer (1977). Zbl0342.41012MR493110
  7. [7] P. GRISVARD, Elliptic Problems in Nonsmooth Domains, Pitman, Boston (1985). Zbl0695.35060MR775683
  8. [8] J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris (1967). MR227584
  9. [9] J. PEETRE, Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier,Grenoble, 16, 279-317 (1966). Zbl0151.17903MR221282
  10. [10] G. STRANG, Approximation in the Finite Element Method, Numer. Math., 19, 81-98 (1972). Zbl0221.65174MR305547
  11. [11] A. ŽENISEK, A General Theorem on Triangular Finite C(m)-Elements RAIRO, R-2, 119-127 (1974). Zbl0321.41003MR388731

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.