A numerical approach to a class of unilateral elliptic problems of non-variational type

S. Finzi Vita

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 2, page 253-269
  • ISSN: 0764-583X

How to cite

top

Finzi Vita, S.. "A numerical approach to a class of unilateral elliptic problems of non-variational type." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.2 (1991): 253-269. <http://eudml.org/doc/193627>.

@article{FinziVita1991,
author = {Finzi Vita, S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {unilateral elliptic problems; finite element method; Convergence; error estimates},
language = {eng},
number = {2},
pages = {253-269},
publisher = {Dunod},
title = {A numerical approach to a class of unilateral elliptic problems of non-variational type},
url = {http://eudml.org/doc/193627},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Finzi Vita, S.
TI - A numerical approach to a class of unilateral elliptic problems of non-variational type
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 2
SP - 253
EP - 269
LA - eng
KW - unilateral elliptic problems; finite element method; Convergence; error estimates
UR - http://eudml.org/doc/193627
ER -

References

top
  1. [1] C. BAIOCCHI, Estimation d'erreur dans L∞ pour les inequations à obstacle, Lecture Notes in Math., 606 (1977), 27-34. Zbl0374.65053MR488847
  2. [2] A. BENSOUSSAN - J. L. LIONS, Applications des inéquations vanationnelles en contrôle stochastique, Dunod, 1978 Zbl0411.49002MR513618
  3. [3] M. CHICCO, Solvability of the Dirichlet problem in H2,p (Ω) for a class of linear second order elliptic partial differential equations, Boll UMI, 4 (1971), 374-387 Zbl0215.45406MR298209
  4. [4] P. G. CIARLET - P. A. RAVIART, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 2 (1973), 17-31. Zbl0251.65069MR375802
  5. [5] Ph. CORTEY-DUMONT, Sur les inéquations variationnelles à operateur non coercif, R.A.I.R.O.-M2AN, 19 (1985), 195-212. MR802593
  6. [6] S. FINZI VITA, L∞-error estimates for vanational inequalities with Hölder continuous obstacles, R.A.I.R.O.-Anal. Numér., 16 (1982), 27-37. Zbl0493.49011MR648743
  7. [7] S. FINZI VITA, Sul trattamento numerico di problemi ellittici di tipo non variazionale, Atti del Convegno di Anahsi Numerica (Sorrento, 1985), De Frede, Napoli (1986), 195-205. 
  8. [8] A. FRIEDMAN, Stochastic differential equations and applications (II), Academic Press, 1975. 
  9. [9] M. G. GARRONI - M. A. VIVALDI, Approximation results for bilateral nonlniear problems of non-variational type, Nonlinear Anal., 8 (1984), 301-312. Zbl0553.35039MR739661
  10. [10] M. G. GARRONI - M. A. VIVALDI, Bilateral evolution problems of non-vanational type : existence, uniqueness, Hölder regularity and approximation of solutions, Manuscripta Math., 48 (1984), 39-69. Zbl0562.35092MR753724
  11. [11] J. ORTEGA - W. RHEINBOLDT, Iterative solutions of nonlinear equations in several variables, Academic Press, 1970. Zbl0241.65046MR273810
  12. [12] J. NITSCHE, L∞-convergence of finite element approximation, Lecture Notes in Math., 606 (1977), 261-274. Zbl0362.65088MR488848
  13. [13] R. H. NOCHETTO, Approximation de problems elipticos de frontera libre, Universidad Complutense de Madrid (internal report, 1985). 
  14. [14] G. M. TROIANIELLO, Some unilatéral problems of the non-vanational type, Math. Nachr., 106 (1982), 47-62. Zbl0514.35026MR675744

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.