-error estimates for variational inequalities with Hölder continuous obstacle
- Volume: 16, Issue: 1, page 27-37
- ISSN: 0764-583X
Access Full Article
topHow to cite
topFinzi Vita, Stefano. "$L_\infty $-error estimates for variational inequalities with Hölder continuous obstacle." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.1 (1982): 27-37. <http://eudml.org/doc/193388>.
@article{FinziVita1982,
author = {Finzi Vita, Stefano},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {variational inequalities; obstacle problems; finite elements; error estimates},
language = {eng},
number = {1},
pages = {27-37},
publisher = {Dunod},
title = {$L_\infty $-error estimates for variational inequalities with Hölder continuous obstacle},
url = {http://eudml.org/doc/193388},
volume = {16},
year = {1982},
}
TY - JOUR
AU - Finzi Vita, Stefano
TI - $L_\infty $-error estimates for variational inequalities with Hölder continuous obstacle
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 1
SP - 27
EP - 37
LA - eng
KW - variational inequalities; obstacle problems; finite elements; error estimates
UR - http://eudml.org/doc/193388
ER -
References
top- 1. C BAIOCCHI, Estimation d’erreur dans pour les inéquations à obstacle, Proc.Conf. on « Mathemetical Aspects of Finite Element Method » (Rome, 1975), Lecture Notes in Math., 606 (1977), pp. 27-34. Zbl0374.65053MR488847
- 2. C. BAIOCCHI and G. A. Pozzi, Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality, R.A.LR.O., Analyse Numér., 11 (1977), pp. 315-340. Zbl0371.65020MR464607
- 3. A. BENSOUSSAN and J. L. LIONS, C. R. Acad. Sci Paris, A-276 (1973), pp. 1411-1415, 1189-1192, 1333-1338 ; A-278 (1974), pp. 675-679, 747-751. Zbl0264.49006
- 4. M. BIROLI, A De Giorgi-Nash-Moser result for a variational inequality, Boll U.M.I, 16-A (1979), pp. 598-605. Zbl0424.35035MR551388
- 5. H. BREZIS, Problèmes unilatéraux, J. Math, pures et appl, 51 (1972), pp. 1-168. Zbl0237.35001MR428137
- 6. F. BREZZI, W. W. HAGER and P. A. RAVIART, Error estimates for the finite element solution of variational inequalities (Part I), Numer. Math., 28 (1977), pp. 431-443. Zbl0369.65030MR448949
- 7. L. A. CAFFARELLI and D. KINDERLEHRER, Potential methods in variational inequalities, J. Anal Math., 37 (1980), pp. 285-295. Zbl0455.49010MR583641
- 8. M. CHIPOT, Sur la régularité lipscitzienne de la solution d'inéquations elliptiques, J. Math, pures et appl., 57 (1978), pp. 69-76. Zbl0335.35038MR481499
- 9. P. G. CIARLET, The finite element method for elliptic problems, North Holland Ed.Amsterdam (1978). Zbl0383.65058MR520174
- 10. P. G. CIARLET and P. A. RAVIART, Maximum principle and uniform convergence for thefinite element method, Comput. Methods Appl. Mech. Engrg., 2 (1973), pp.17-31. Zbl0251.65069MR375802
- 11. P. CORTEY DUMONT, Approximation numérique d'une inéquation quasi-variationnelle liée à problème de gestion de stock, R.A I.R.O., Analyse Numér., 14 (1980),pp. 335-346. Zbl0462.65045MR596539
- 12. J. FREHSE, On the smoothness of variational inequalities with obstacle, Proc. Semester on P.D.E., Banach Center, Warszawa (1978).
- 13. J. FREHSE and U. Mosco, Variational inequalities with one-sided irregular obstacles, Manuscripta Math., 28 (1979), pp. 219-233. Zbl0447.49006MR535703
- 14. H. LEWY and G. STAMPACCHIA, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), pp. 153-188. Zbl0167.11501MR247551
- 15. E. LOINGER, A finite element approach to a quasi-variational inequality, Calcolo,17 (1980), pp. 197-209. Zbl0458.65060MR631586
- 16. U. Mosco, Implicit variational problems and quasi-variational inequalities, Proc.Summer School on « Nonlinear Operators and the Calculus of Variations » (Bruxelles, 1975), Lecture Notes in Math., 543 (1976), pp. 83-156. Zbl0346.49003MR513202
- 17. J. NITSCHE, -convergence of finite element approximation, Proc. Conf. on « Mathematical Aspects of Finite Element Methods» (Rome, 1975), Lecture Notes in Math.,606 (1977), pp. 261-274. Zbl0362.65088MR488848
- 18. A. H. SCHATZ and L. B. WAHLBIN, On the quasi-optimality in of the -projection into finite element spaces, to appear. Zbl0483.65006
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.