A triangular mixed finite element method for the stationary semiconductor device equations
- Volume: 25, Issue: 4, page 441-463
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMiller, J. J. H., and Wang, S.. "A triangular mixed finite element method for the stationary semiconductor device equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.4 (1991): 441-463. <http://eudml.org/doc/193635>.
@article{Miller1991,
author = {Miller, J. J. H., Wang, S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {triangular finite element method; stationary semiconductor device equations; Scharfetter-Gummel technique; stability},
language = {eng},
number = {4},
pages = {441-463},
publisher = {Dunod},
title = {A triangular mixed finite element method for the stationary semiconductor device equations},
url = {http://eudml.org/doc/193635},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Miller, J. J. H.
AU - Wang, S.
TI - A triangular mixed finite element method for the stationary semiconductor device equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 4
SP - 441
EP - 463
LA - eng
KW - triangular finite element method; stationary semiconductor device equations; Scharfetter-Gummel technique; stability
UR - http://eudml.org/doc/193635
ER -
References
top- [1] R. A. ADAMS, Sobolev Spaces, Academie Press, New York (1975). Zbl0314.46030MR450957
- [2] I. BABUŠKA, A. K. AZIZ, Survey Lectures on the Mathematical Foundations of the Finite Element Method from The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York (1972). Zbl0268.65052MR421106
- [3] I. BABUŠKA, J. E. OSBORN, Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods, SIAM J. Numer. Anal., 20, No. 3 (1983) 510-536. Zbl0528.65046MR701094
- [4] R. E. BANK, D. J. ROSE, Some Error Estimates fot the Box Method, SIAM J. Numer. Anal., 24, No. 4 (1987) 777-787. Zbl0634.65105MR899703
- [5] F. BREZZI, P. MARINI, P. PIETRA, Méthodes d'éléments finis et schema de Scharfetter-Gummel, C. R. Acad. Sci. Paris, 305, Seriel (1987) 599-604. Zbl0623.65131MR917577
- [6] F. BREZZI, P. MARINI, P. PIETRA, Two-Dimensional Exponential Fitting and Applications to Semiconductor Device Equations, SIAM J. Numer. Anal. 26 (1989) 1342-1355. Zbl0686.65088MR1025092
- [7] F. BREZZI, L. D. MARINI, P. PIETRANumerical Solution of Semiconductor Devices, Comp. Meth. Appl. Mech. Engin, 75 (1989) 493-514. Zbl0698.76125MR1035759
- [8] E. BUTURLA, P. COTTRELL, B. M. GROSSMAN, K. A. SALSBURG, Finite-Element Analysis of Semiconductor Devices The FIELDAY Program, IBM J. Res. Develop., 25, No. 4 (1981) 218-231.
- [9] P. G. CIARLET, P. A. RAVIART, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., 46 (1972) 177-199. Zbl0243.41004MR336957
- [10] B. DELAUNAY, Sur la sphere vide, Izv. Akad. Nauk. SSSR, Math and Nat. Sci. Div., No. 6 (1934) 793-800 Zbl0010.41101
- [11] G. L. DIRICHLET, Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math., 40, No. 3 (1850) 209-227.
- [12] V. GIRAULT, P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lect. Notes in Math., No. 749, Springer-Verlag (1979). Zbl0413.65081MR548867
- [13] H. K. GUMMEL, A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculation, IEEE Trans. Elec. Dev., ED-11 (1964) 455-465.
- [14] B. HEINRICH, Finite difference methods on irregular networks, Birkhauser Verlag, Basel-Boston-Stuttgart (1987). Zbl0623.65096MR875416
- [15] T IKEDA, Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, North-Holland (1983) Zbl0508.65049
- [16] R. H. LI, Generalized Difference Methods for a Nonlinear Dirichlet Problem, SIAM J. Numer. Anal. Vol. 24, No. 1 (1987) 77-88 Zbl0626.65091MR874736
- [17] R. H. MACNEAL, An Asymmetrical Finite Difference Network, Quart. Appl. Math., 11 (1953) 295-310. Zbl0053.26304MR57631
- [18] P. A. MARKOWICH, M. ZLÁMAL, Inverse-Average-Type Finite Element Discretisations of Self adjoint Second-Order Elliptic Problems, Math. Comput., 51, No. 184 (1988) 431-449. Zbl0699.65074MR930223
- [19] B. J. MCCARTIN, Discretization of the Semiconductor Device Equations from New Problems and New Solutions for Device and Process Modelling, ed. J. J. H. Miller, Boole Press, Dublin (1985).
- [20] J. J. H. MILLER, S. WANG, C. H. WU, A Mixed Finite Element Method for the Stationary Semiconductor Continuity Equations, Engin. Comput., 5, No. 4 (1988) 285-288. MR1171713
- [21] M. S. MOCK, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, COMPEL, Vol. 2, No. 4 (1983) 117-139. Zbl0619.65116
- [22] J. T. ODEN, J. K. LEE, Theory of Mixed and Hybrid Finite-Element Approximations in Linear Elasticity from IUTAM/IUM Symp. Applications of Methods of Functional Analysis to Problems of Mechanics, Lect. Notes in Math. No. 503, Springer-Verlag (1976). Zbl0361.73031MR670098
- [23] J. T. ODEN, J. N. REDDY, An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Sons, New York (1976). Zbl0336.35001MR461950
- [24] W. V. VAN ROOSBROECK, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors, Bell Syst. Tech. J., 29 (1950) 560-607
- [25] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962). Zbl0133.08602MR158502
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.