A triangular mixed finite element method for the stationary semiconductor device equations

J. J. H. Miller; S. Wang

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 4, page 441-463
  • ISSN: 0764-583X

How to cite

top

Miller, J. J. H., and Wang, S.. "A triangular mixed finite element method for the stationary semiconductor device equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.4 (1991): 441-463. <http://eudml.org/doc/193635>.

@article{Miller1991,
author = {Miller, J. J. H., Wang, S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {triangular finite element method; stationary semiconductor device equations; Scharfetter-Gummel technique; stability},
language = {eng},
number = {4},
pages = {441-463},
publisher = {Dunod},
title = {A triangular mixed finite element method for the stationary semiconductor device equations},
url = {http://eudml.org/doc/193635},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Miller, J. J. H.
AU - Wang, S.
TI - A triangular mixed finite element method for the stationary semiconductor device equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 4
SP - 441
EP - 463
LA - eng
KW - triangular finite element method; stationary semiconductor device equations; Scharfetter-Gummel technique; stability
UR - http://eudml.org/doc/193635
ER -

References

top
  1. [1] R. A. ADAMS, Sobolev Spaces, Academie Press, New York (1975). Zbl0314.46030MR450957
  2. [2] I. BABUŠKA, A. K. AZIZ, Survey Lectures on the Mathematical Foundations of the Finite Element Method from The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York (1972). Zbl0268.65052MR421106
  3. [3] I. BABUŠKA, J. E. OSBORN, Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods, SIAM J. Numer. Anal., 20, No. 3 (1983) 510-536. Zbl0528.65046MR701094
  4. [4] R. E. BANK, D. J. ROSE, Some Error Estimates fot the Box Method, SIAM J. Numer. Anal., 24, No. 4 (1987) 777-787. Zbl0634.65105MR899703
  5. [5] F. BREZZI, P. MARINI, P. PIETRA, Méthodes d'éléments finis et schema de Scharfetter-Gummel, C. R. Acad. Sci. Paris, 305, Seriel (1987) 599-604. Zbl0623.65131MR917577
  6. [6] F. BREZZI, P. MARINI, P. PIETRA, Two-Dimensional Exponential Fitting and Applications to Semiconductor Device Equations, SIAM J. Numer. Anal. 26 (1989) 1342-1355. Zbl0686.65088MR1025092
  7. [7] F. BREZZI, L. D. MARINI, P. PIETRANumerical Solution of Semiconductor Devices, Comp. Meth. Appl. Mech. Engin, 75 (1989) 493-514. Zbl0698.76125MR1035759
  8. [8] E. BUTURLA, P. COTTRELL, B. M. GROSSMAN, K. A. SALSBURG, Finite-Element Analysis of Semiconductor Devices The FIELDAY Program, IBM J. Res. Develop., 25, No. 4 (1981) 218-231. 
  9. [9] P. G. CIARLET, P. A. RAVIART, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., 46 (1972) 177-199. Zbl0243.41004MR336957
  10. [10] B. DELAUNAY, Sur la sphere vide, Izv. Akad. Nauk. SSSR, Math and Nat. Sci. Div., No. 6 (1934) 793-800 Zbl0010.41101
  11. [11] G. L. DIRICHLET, Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math., 40, No. 3 (1850) 209-227. 
  12. [12] V. GIRAULT, P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lect. Notes in Math., No. 749, Springer-Verlag (1979). Zbl0413.65081MR548867
  13. [13] H. K. GUMMEL, A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculation, IEEE Trans. Elec. Dev., ED-11 (1964) 455-465. 
  14. [14] B. HEINRICH, Finite difference methods on irregular networks, Birkhauser Verlag, Basel-Boston-Stuttgart (1987). Zbl0623.65096MR875416
  15. [15] T IKEDA, Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, North-Holland (1983) Zbl0508.65049
  16. [16] R. H. LI, Generalized Difference Methods for a Nonlinear Dirichlet Problem, SIAM J. Numer. Anal. Vol. 24, No. 1 (1987) 77-88 Zbl0626.65091MR874736
  17. [17] R. H. MACNEAL, An Asymmetrical Finite Difference Network, Quart. Appl. Math., 11 (1953) 295-310. Zbl0053.26304MR57631
  18. [18] P. A. MARKOWICH, M. ZLÁMAL, Inverse-Average-Type Finite Element Discretisations of Self adjoint Second-Order Elliptic Problems, Math. Comput., 51, No. 184 (1988) 431-449. Zbl0699.65074MR930223
  19. [19] B. J. MCCARTIN, Discretization of the Semiconductor Device Equations from New Problems and New Solutions for Device and Process Modelling, ed. J. J. H. Miller, Boole Press, Dublin (1985). 
  20. [20] J. J. H. MILLER, S. WANG, C. H. WU, A Mixed Finite Element Method for the Stationary Semiconductor Continuity Equations, Engin. Comput., 5, No. 4 (1988) 285-288. MR1171713
  21. [21] M. S. MOCK, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, COMPEL, Vol. 2, No. 4 (1983) 117-139. Zbl0619.65116
  22. [22] J. T. ODEN, J. K. LEE, Theory of Mixed and Hybrid Finite-Element Approximations in Linear Elasticity from IUTAM/IUM Symp. Applications of Methods of Functional Analysis to Problems of Mechanics, Lect. Notes in Math. No. 503, Springer-Verlag (1976). Zbl0361.73031MR670098
  23. [23] J. T. ODEN, J. N. REDDY, An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Sons, New York (1976). Zbl0336.35001MR461950
  24. [24] W. V. VAN ROOSBROECK, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors, Bell Syst. Tech. J., 29 (1950) 560-607 
  25. [25] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962). Zbl0133.08602MR158502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.