An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations
- Volume: 28, Issue: 2, page 123-140
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMiller, J. J. H., and Wang, Song. "An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.2 (1994): 123-140. <http://eudml.org/doc/193733>.
@article{Miller1994,
author = {Miller, J. J. H., Wang, Song},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Scharfetter-Gummel box method; semiconductor device equations; Slotboom variables; stability; error estimate},
language = {eng},
number = {2},
pages = {123-140},
publisher = {Dunod},
title = {An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations},
url = {http://eudml.org/doc/193733},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Miller, J. J. H.
AU - Wang, Song
TI - An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 2
SP - 123
EP - 140
LA - eng
KW - Scharfetter-Gummel box method; semiconductor device equations; Slotboom variables; stability; error estimate
UR - http://eudml.org/doc/193733
ER -
References
top- [1] R. E. BANK, D. J. ROSE, Some Error Estimates for the Box Method, SIAM J. Numer. Anal., 24, No. 4, 1987, pp. 777-787. Zbl0634.65105MR899703
- [2] F. BREZZI, P. MARINI, P. PIETRA, Two-dimensional exponentially fitting and applications to semiconductor device equations, SIAM J. Numer. Anal., 26, 1989, pp. 1342-1355. Zbl0686.65088MR1025092
- [3] E. BUTURLA, P. COTTRELL, B. M. GROSSMAN, K. A. SALSBURG, Finite-Element Analysis of Semiconductor Devices : The FIELDAY Program, IBM J. Res. Develop., 25, No. 4, 1981, pp. 218-231.
- [4] B. DELAUNAY, Sur la sphère vide, Izv. Akad. Nauk. SSSR, Math. and Nat. Sci. Div., No. 6, 1934, pp. 793-800. Zbl0010.41101
- [5] G. L. DIRICHLET, Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math., 40, No. 3, 1850, pp. 209-227.
- [6] H. K. GUMMEL, A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculation, IEEE Trans. Elec. Dev., ED-11, 1964,pp. 455-465.
- [7] R. H. MACNEAL, An Asymmetrical Finite Difference Network, Quart. Appl. Math., 11, 1953, pp. 295-310. Zbl0053.26304MR57631
- [8] P. A. MARKOWICH, M. ZLÁMAL, Inverse-Average-Type Finite Element Discretisations of Selfadjoint Second-Order Elliptic Problems, Math. Comp., 51,No. 184, 1988, pp. 431-449. Zbl0699.65074MR930223
- [9] B. J. McCARTIN, Discretization of the Semiconductor Device Equations from New Problems and New Solutions for Device and Process Modelling, ed. J.J.H. Miller, Boole Press, Dublin, 1985.
- [10] J. J. H. MILLER, S. WANG, A Triangular Mixed Finite Element Method for the Stationary Semiconductor Device Equations, M2AN, 25, No. 4, 1991, pp. 441-463. Zbl0732.65114MR1108585
- [11] J. J. H. MILLER, S. WANG, A New Non-conforming Petrov-Galerkin Finite Element Method with Triangular Elements for an Advection-Diffusion Problem, IMAJ. Num. Anal., to appear. Zbl0806.65111
- [12] M. S. MOCK, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, COMPEL, 2, No. 4, 1983, pp. 117-139. Zbl0619.65116
- [13] M. S. MOCK, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, II, COMPEL, 3, No. 3, 1984, pp. 137-149. Zbl0619.65117MR782025
- [14] J. T. ODEN, J. N. REDDY, An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Son, New York-London-Sydney-Toronto, 1976. Zbl0336.35001MR461950
- [15] D. SCHARFETTER, H. K. GUMMEL, Large-signal analysis of a silicon read diode oscillator, IEEE Trans. Elec. Dev., ED-16, 1969, pp. 64-77.
- [16] J. W. SLOTBOOM, Iterative Scheme for 1- and 2-Dimensional D. C.-Transistor, IEEE Trans. Elect. Dev. 24, 1977, pp. 1123-1125.
- [17] P. SONNEVELD, CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear Systems, SIAM J. Sci. Statist. Comput., 10, 1989, pp. 36-52. Zbl0666.65029MR976160
- [18] H. A. VAN DER VORST, Bi-CGSTAB : A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., 13, No. 2, 1992, pp. 631-644. Zbl0761.65023MR1149111
- [19] W. V. VAN ROOSBROECK, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors, Bell Syst. Tech. J., 29, 1950, pp. 560-607.
- [20] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. Zbl0133.08602MR158502
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.