An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations

J. J. H. Miller; Song Wang

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 2, page 123-140
  • ISSN: 0764-583X

How to cite

top

Miller, J. J. H., and Wang, Song. "An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.2 (1994): 123-140. <http://eudml.org/doc/193733>.

@article{Miller1994,
author = {Miller, J. J. H., Wang, Song},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Scharfetter-Gummel box method; semiconductor device equations; Slotboom variables; stability; error estimate},
language = {eng},
number = {2},
pages = {123-140},
publisher = {Dunod},
title = {An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations},
url = {http://eudml.org/doc/193733},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Miller, J. J. H.
AU - Wang, Song
TI - An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 2
SP - 123
EP - 140
LA - eng
KW - Scharfetter-Gummel box method; semiconductor device equations; Slotboom variables; stability; error estimate
UR - http://eudml.org/doc/193733
ER -

References

top
  1. [1] R. E. BANK, D. J. ROSE, Some Error Estimates for the Box Method, SIAM J. Numer. Anal., 24, No. 4, 1987, pp. 777-787. Zbl0634.65105MR899703
  2. [2] F. BREZZI, P. MARINI, P. PIETRA, Two-dimensional exponentially fitting and applications to semiconductor device equations, SIAM J. Numer. Anal., 26, 1989, pp. 1342-1355. Zbl0686.65088MR1025092
  3. [3] E. BUTURLA, P. COTTRELL, B. M. GROSSMAN, K. A. SALSBURG, Finite-Element Analysis of Semiconductor Devices : The FIELDAY Program, IBM J. Res. Develop., 25, No. 4, 1981, pp. 218-231. 
  4. [4] B. DELAUNAY, Sur la sphère vide, Izv. Akad. Nauk. SSSR, Math. and Nat. Sci. Div., No. 6, 1934, pp. 793-800. Zbl0010.41101
  5. [5] G. L. DIRICHLET, Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math., 40, No. 3, 1850, pp. 209-227. 
  6. [6] H. K. GUMMEL, A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculation, IEEE Trans. Elec. Dev., ED-11, 1964,pp. 455-465. 
  7. [7] R. H. MACNEAL, An Asymmetrical Finite Difference Network, Quart. Appl. Math., 11, 1953, pp. 295-310. Zbl0053.26304MR57631
  8. [8] P. A. MARKOWICH, M. ZLÁMAL, Inverse-Average-Type Finite Element Discretisations of Selfadjoint Second-Order Elliptic Problems, Math. Comp., 51,No. 184, 1988, pp. 431-449. Zbl0699.65074MR930223
  9. [9] B. J. McCARTIN, Discretization of the Semiconductor Device Equations from New Problems and New Solutions for Device and Process Modelling, ed. J.J.H. Miller, Boole Press, Dublin, 1985. 
  10. [10] J. J. H. MILLER, S. WANG, A Triangular Mixed Finite Element Method for the Stationary Semiconductor Device Equations, M2AN, 25, No. 4, 1991, pp. 441-463. Zbl0732.65114MR1108585
  11. [11] J. J. H. MILLER, S. WANG, A New Non-conforming Petrov-Galerkin Finite Element Method with Triangular Elements for an Advection-Diffusion Problem, IMAJ. Num. Anal., to appear. Zbl0806.65111
  12. [12] M. S. MOCK, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, COMPEL, 2, No. 4, 1983, pp. 117-139. Zbl0619.65116
  13. [13] M. S. MOCK, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, II, COMPEL, 3, No. 3, 1984, pp. 137-149. Zbl0619.65117MR782025
  14. [14] J. T. ODEN, J. N. REDDY, An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Son, New York-London-Sydney-Toronto, 1976. Zbl0336.35001MR461950
  15. [15] D. SCHARFETTER, H. K. GUMMEL, Large-signal analysis of a silicon read diode oscillator, IEEE Trans. Elec. Dev., ED-16, 1969, pp. 64-77. 
  16. [16] J. W. SLOTBOOM, Iterative Scheme for 1- and 2-Dimensional D. C.-Transistor, IEEE Trans. Elect. Dev. 24, 1977, pp. 1123-1125. 
  17. [17] P. SONNEVELD, CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear Systems, SIAM J. Sci. Statist. Comput., 10, 1989, pp. 36-52. Zbl0666.65029MR976160
  18. [18] H. A. VAN DER VORST, Bi-CGSTAB : A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., 13, No. 2, 1992, pp. 631-644. Zbl0761.65023MR1149111
  19. [19] W. V. VAN ROOSBROECK, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors, Bell Syst. Tech. J., 29, 1950, pp. 560-607. 
  20. [20] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. Zbl0133.08602MR158502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.