A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices
- Volume: 33, Issue: 1, page 99-112
- ISSN: 0764-583X
Access Full Article
topHow to cite
topWang, Song. "A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 99-112. <http://eudml.org/doc/193917>.
@article{Wang1999,
author = {Wang, Song},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; drift-diffusion model; semiconductor devices; Scharfetter-Gummel method; error bounds},
language = {eng},
number = {1},
pages = {99-112},
publisher = {Dunod},
title = {A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices},
url = {http://eudml.org/doc/193917},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Wang, Song
TI - A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 99
EP - 112
LA - eng
KW - finite element method; drift-diffusion model; semiconductor devices; Scharfetter-Gummel method; error bounds
UR - http://eudml.org/doc/193917
ER -
References
top- [1] D.N. de G. Allen, R.V. Southwell, Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder. Quart. J. Mech. Appl Math. 8 (1955) 129-145. Zbl0064.19802MR70367
- [2] R.E. Bank, J.F. Bürgler, W. Fichtner, R.K. Smith, Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math. 58 (1990) 185-202. Zbl0713.65066MR1069278
- [3] F. Brezzi, P. Marini, P. Pietra, Two-dimensional exponentially fitting and applications to semiconductor device equations. SIAM J. Numer. Anal 26 (1989) 1342-1355. Zbl0686.65088MR1025092
- [4] E. Buturla, P. Cottrell, B.M. Grossman, K.A. Salsburg, Finite Element Analysis of Semiconductor Devices: The FIELDAY Program. IBM J. Res. Develop. 25, (1981) 218-231.
- [5] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [6] C.J. Fitzsimons, J.J.H. Miller, S. Wang, C.H. Wu, Hexahedral finite elements for the stationary semiconductor device equations. Comp. Meth. Appl. Mech. Engrg. 84 (1990) 43-57. Zbl0725.65119MR1082819
- [7] H.K. Gummel, A self-consistent iterative scheme for one-dimensional Steady State Transistor Calculation. IEEE Trans. Elec. Dev. 11 (1964) 455-465.
- [8] P.A. Markowich, M. Zlámal, Inverse-Average-Type Finite Element Discrétisations of Selfadjoint Second-Order Elliptic Problems. Math. Comp. 51 (1988) 431-449. Zbl0699.65074MR930223
- [9] B.J. McCartin, Discretization of the Semiconductor Device Equations. From New Problems and New Solutions for Device and Process Modelling. J.J.H. Miller Ed. Boole Press, Dublin (1985).
- [10] J.J.H. Miller and S. Wang, A Triangular Mixed Finite Element Method for the Stationary Semiconductor Device Equations. RAIRO Modél. Math. Anal. Numér. 25 (1991) 441-463. Zbl0732.65114MR1108585
- [11] J.J.H. Miller and S. Wang, An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations. RAIRO Modél. Math. Anal. Numér. 28 (1994) 123-140. Zbl0820.65089MR1267195
- [12] J.J.H. Miller and S. Wang, A tetrahedral mixed finite element method for the stationary semiconductor continuity equations. SIAM J. Numer. Anal. 31 (1994) 196-216. Zbl0797.65106MR1259972
- [13] M.S. Mock, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models. COMPEL 2 (1983) 117-139. Zbl0619.65116
- [14] D. Scharfetter and H.K. Gummel, Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Elec. Dev. 16 (1969) 64-77.
- [15] M. Sever, Discretization of time-dependent continuity equations. Proceedings of the 6th International NASECODE Conference. J.J.H. Miller Ed. Boole Press, Dublin (1988) 71-83. Zbl0800.65022MR1066495
- [16] J.W. Slotboom, Iterative Scheme for 1- and 2-Dimensional D.C.-Transistors. IEEE Trans. Elect. Dev. 24 (1977) 1123-1125.
- [17] S.M. Sze, The physics of semiconductor devices, 2nd ed. John Wiley & Sons, New York (1981).
- [18] W.V. Van Roosbroeck, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell Syst. Tech. J. 29 (1950) 560-607.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.