A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices

Song Wang

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 1, page 99-112
  • ISSN: 0764-583X

How to cite

top

Wang, Song. "A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 99-112. <http://eudml.org/doc/193917>.

@article{Wang1999,
author = {Wang, Song},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; drift-diffusion model; semiconductor devices; Scharfetter-Gummel method; error bounds},
language = {eng},
number = {1},
pages = {99-112},
publisher = {Dunod},
title = {A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices},
url = {http://eudml.org/doc/193917},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Wang, Song
TI - A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 99
EP - 112
LA - eng
KW - finite element method; drift-diffusion model; semiconductor devices; Scharfetter-Gummel method; error bounds
UR - http://eudml.org/doc/193917
ER -

References

top
  1. [1] D.N. de G. Allen, R.V. Southwell, Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder. Quart. J. Mech. Appl Math. 8 (1955) 129-145. Zbl0064.19802MR70367
  2. [2] R.E. Bank, J.F. Bürgler, W. Fichtner, R.K. Smith, Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math. 58 (1990) 185-202. Zbl0713.65066MR1069278
  3. [3] F. Brezzi, P. Marini, P. Pietra, Two-dimensional exponentially fitting and applications to semiconductor device equations. SIAM J. Numer. Anal 26 (1989) 1342-1355. Zbl0686.65088MR1025092
  4. [4] E. Buturla, P. Cottrell, B.M. Grossman, K.A. Salsburg, Finite Element Analysis of Semiconductor Devices: The FIELDAY Program. IBM J. Res. Develop. 25, (1981) 218-231. 
  5. [5] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
  6. [6] C.J. Fitzsimons, J.J.H. Miller, S. Wang, C.H. Wu, Hexahedral finite elements for the stationary semiconductor device equations. Comp. Meth. Appl. Mech. Engrg. 84 (1990) 43-57. Zbl0725.65119MR1082819
  7. [7] H.K. Gummel, A self-consistent iterative scheme for one-dimensional Steady State Transistor Calculation. IEEE Trans. Elec. Dev. 11 (1964) 455-465. 
  8. [8] P.A. Markowich, M. Zlámal, Inverse-Average-Type Finite Element Discrétisations of Selfadjoint Second-Order Elliptic Problems. Math. Comp. 51 (1988) 431-449. Zbl0699.65074MR930223
  9. [9] B.J. McCartin, Discretization of the Semiconductor Device Equations. From New Problems and New Solutions for Device and Process Modelling. J.J.H. Miller Ed. Boole Press, Dublin (1985). 
  10. [10] J.J.H. Miller and S. Wang, A Triangular Mixed Finite Element Method for the Stationary Semiconductor Device Equations. RAIRO Modél. Math. Anal. Numér. 25 (1991) 441-463. Zbl0732.65114MR1108585
  11. [11] J.J.H. Miller and S. Wang, An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations. RAIRO Modél. Math. Anal. Numér. 28 (1994) 123-140. Zbl0820.65089MR1267195
  12. [12] J.J.H. Miller and S. Wang, A tetrahedral mixed finite element method for the stationary semiconductor continuity equations. SIAM J. Numer. Anal. 31 (1994) 196-216. Zbl0797.65106MR1259972
  13. [13] M.S. Mock, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models. COMPEL 2 (1983) 117-139. Zbl0619.65116
  14. [14] D. Scharfetter and H.K. Gummel, Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Elec. Dev. 16 (1969) 64-77. 
  15. [15] M. Sever, Discretization of time-dependent continuity equations. Proceedings of the 6th International NASECODE Conference. J.J.H. Miller Ed. Boole Press, Dublin (1988) 71-83. Zbl0800.65022MR1066495
  16. [16] J.W. Slotboom, Iterative Scheme for 1- and 2-Dimensional D.C.-Transistors. IEEE Trans. Elect. Dev. 24 (1977) 1123-1125. 
  17. [17] S.M. Sze, The physics of semiconductor devices, 2nd ed. John Wiley & Sons, New York (1981). 
  18. [18] W.V. Van Roosbroeck, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell Syst. Tech. J. 29 (1950) 560-607. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.