A new mixed finite element method for the Timoshenko beam problem

Leopoldo P. Franca; Abimael F. D. Loula

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 5, page 561-578
  • ISSN: 0764-583X

How to cite

top

Franca, Leopoldo P., and Loula, Abimael F. D.. "A new mixed finite element method for the Timoshenko beam problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.5 (1991): 561-578. <http://eudml.org/doc/193640>.

@article{Franca1991,
author = {Franca, Leopoldo P., Loula, Abimael F. D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {interpolation procedure; Galerkin method; perturbed Galerkin method; shear force; rotation; Lagrange multiplier; Brezzi's theorem; mixed variational formulation; convergence; equal-order linear and quadratic elements},
language = {eng},
number = {5},
pages = {561-578},
publisher = {Dunod},
title = {A new mixed finite element method for the Timoshenko beam problem},
url = {http://eudml.org/doc/193640},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Franca, Leopoldo P.
AU - Loula, Abimael F. D.
TI - A new mixed finite element method for the Timoshenko beam problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 5
SP - 561
EP - 578
LA - eng
KW - interpolation procedure; Galerkin method; perturbed Galerkin method; shear force; rotation; Lagrange multiplier; Brezzi's theorem; mixed variational formulation; convergence; equal-order linear and quadratic elements
UR - http://eudml.org/doc/193640
ER -

References

top
  1. [1] A. F. D. LOULA, T. J. R. HUGHES, L. P. FRANCA and L MIRANDA, Mixed Petrov-Galerkin Method for the Timoshenko Beam, Comput. Methods Appl. Mech. Engrg., 63, 133-154, 1987. Zbl0607.73076MR906535
  2. [2] F. BREZZIOn the Existence, Uniqueness and Approximation of Saddle-point Problems Arising From Lagrange Multipliers, RAIRO Modél. Math. Anal. Numér., 8, R-2, 129-151, 1974. Zbl0338.90047MR365287
  3. [3] D. N. ARNOLD, Discretization by Finite Elements of a Model Parameter Dependent Problem, Numer. Math., 37, 129-151, 1974. Zbl0446.73066MR627113
  4. [4] L. P. FRANCIA, New Mixed Finite Element Methods, PhD Dissertation, Stanford University, 1987. 
  5. [5] P. G. CIARLET, The Finite Element Method for Elliptc Problems, North-Holland Publishing Company, Amsterdam, 1978. Zbl0383.65058MR520174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.