Expanded mixed finite element methods for linear second-order elliptic problems, I

Zhangxin Chen

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 4, page 479-499
  • ISSN: 0764-583X

How to cite

top

Chen, Zhangxin. "Expanded mixed finite element methods for linear second-order elliptic problems, I." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.4 (1998): 479-499. <http://eudml.org/doc/193883>.

@article{Chen1998,
author = {Chen, Zhangxin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed finite element method; error estimate; superconvergence; linear second-order elliptic problem},
language = {eng},
number = {4},
pages = {479-499},
publisher = {Dunod},
title = {Expanded mixed finite element methods for linear second-order elliptic problems, I},
url = {http://eudml.org/doc/193883},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Chen, Zhangxin
TI - Expanded mixed finite element methods for linear second-order elliptic problems, I
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 4
SP - 479
EP - 499
LA - eng
KW - mixed finite element method; error estimate; superconvergence; linear second-order elliptic problem
UR - http://eudml.org/doc/193883
ER -

References

top
  1. [1] T. ARBOGAST and Z. CHEN, On the implementation of mixed methods as nonconforming methods for second order elliptic problems, Math. Comp. 64 (1995), 943-972. Zbl0829.65127MR1303084
  2. [2] D. ARNOLD and F. BREZZI, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modèl. Math. Anal. Numér. 19 (1985), 7-32. Zbl0567.65078MR813687
  3. [3] J. BRAMBLE and J. PASCIAK, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp. 50 (1988), 1-17. Zbl0643.65017MR917816
  4. [4] F. BREZZI, J. Jr. DOUGLAS, R. DURÁN and M. FORTIN, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), 237-250. Zbl0631.65107MR890035
  5. [5] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN and L. MARINI, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modèl. Math. Anal. Numér. 21 (1987), 581-604. Zbl0689.65065MR921828
  6. [6] F. BREZZI, J. Jr. DOUGLAS and L. MARINI, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. Zbl0599.65072MR799685
  7. [7] R. CHANDRA, Conjugate gradient methods for partial differential equations, Report 129, Computer Science Department, Yale University, New Haven, CT (1978). 
  8. [8] M. CELIA and P. BINNING, Two-phase unsaturated flow. one dimensional simulation and air phase velocities, Water Resources Research 28 (1992), 2819-2828. 
  9. [9] Z. CHEN, Unified analysis of the hybrid form of mixed finite elements for second order elliptic problems, J. Engng. Math. 8 (1991), 91-102. 
  10. [10] Z. CHEN, Analysis of mixed methods using conforming and nonconforming finite element methods, RAIRO Modèl. Math. Anal. Numér. 27 (1993), 9-34. Zbl0784.65075MR1204626
  11. [11] Z. CHEN, Lp-posteriori error analysis of mixed methods for linear and quasilinear elliptic problems, in Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, I. Babuska et al., eds., The IMA Volumes in Mathematics and its Applications, Springer-Verlag, Berlin and New York, 75 (1995), 187-200. Zbl0831.65110MR1370251
  12. [12] Z. CHEN, BDM mixed methods for a nonlinear elliptic problem, J. Comp. Appl. Math. 53 (1994), 207-223. Zbl0819.65129MR1306126
  13. [13] Z. CHEN, Expanded mixed finite element methods for quasilinear second order elliptic problems II, IMA Prepnnt Series # 1278, 1994, RAIRO Modèl. Math. anal. Numér., in press. Zbl0910.65080MR1637069
  14. [14] Z. CHEN and J. Jr. DOUGLAS, Prismatic mixed finite elements for second order elliptic problems, Calcolo 26 (1989), 135-148. Zbl0711.65089MR1083050
  15. [15] J. Jr. DOUGLAS, R. DURÁN and P. PIETRA, Formulation of altemating-direction iterative methods for mixed methods in three space, in the Proceedings of the Simposium Internacional de Analisis Numérico, E. Ortiz, éd., Madrid (1987),21-30. Zbl0609.65071MR899777
  16. [16] J. Jr. DOUGLAS, R. DURÁN and P. PIETRA, Alternating-direction iteration for mixed finite element methods, in the Proceedings of the Seventh International Conference on Computing Methods in Applied Sciences and Engineering VII, R. Glowinski and J. L. Lions, eds., North-Holland, December (1986). Zbl0677.65105MR905295
  17. [17] J. DOUGLAS, R. EWING and M. WHEELER, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numér. 17 (1983), 17-33. Zbl0516.76094MR695450
  18. [18] J. Jr. DOUGLAS, R. EWING and M. WHEELER, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO Anal. Numér. 17 (1983), 249-265. Zbl0526.76094MR702137
  19. [19] J. Jr. DOUGLAS and P. PIETRA, A description of some alternating-direction techniques for mixed finite element methods, in Mathematical and Computational Methods in Seismic Exploration and Reservoir Modeling, SIAM, Philadelphia, PA (1985), 37-53. 
  20. [20] J. Jr. DOUGLAS and J. ROBERTS, Global estimates for mixed methods for second order elliptic problems, Math. Comp.. 45 (1985), 39-52. Zbl0624.65109MR771029
  21. [21] J. Jr. DOUGLAS and J. WANG, A new family of mixed finite element spaces over rectangles, Mat. Aplic. Comput. 12 (1993), 183-197. Zbl0806.65109MR1288240
  22. [22] R. DURÁN, Error analysis in Lp, 1 ≤ p ≤ ∞, for mixed finite element methods for linear and quasi-linear elliptic problems, RAIRO Mod. Math. Anal. Numér. 22 (1988), 371-387. Zbl0698.65060MR958875
  23. [23] R. EWING, R. LAZAROV P. LU and P. VASSILEVSKI, Preconditioning indefinite systems arising from the mixed finite element discretization of second order elliptic systems, in Preconditioned Conjugate Gradient Methods, O. Axelsson and L. Kolotilina, eds., Lecture Notes in Math. 1457, Springer-Verlag, Berlin (1990), 28-43. Zbl0719.65024MR1101627
  24. [24] L. FRANCA and A. LOULA, A new mixed finite element method for the Timoshenko beam problem, RAIRO Mod. Math. Anal. Numér. 25 (1991), 561-578. Zbl0779.73059MR1111655
  25. [25] L. GASTALDI and R. NOCHETTO, Optimal L∞-error estimates for nonconforming and mixed finite element methods of lowest order, Numer. Math. 50 (1987), 587-611. Zbl0597.65080MR880337
  26. [26] D. GILBARG and N. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer Verlag, Berlin, 1977. Zbl0361.35003MR473443
  27. [27] J. C. NEDELEC, Mixed finite elements in R3, Numer. Math. 35 (1980) 315-341. Zbl0419.65069MR592160
  28. [28] J. C. NEDELEC, A new family of mixed finite elements in R3, Numer. Math. 50 (1986), 57- 81. Zbl0625.65107MR864305
  29. [29] C. PAIGE and M. SAUNDERS, Solution of sparse indefinite systems of linear equations, SIAM Numer. anal. 12 (1975), 617-629. Zbl0319.65025MR383715
  30. [30] P. A. RAVIART and J. M. THOMAS, A mixed finite element method for second order elliptic problems, Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292-315. Zbl0362.65089MR483555
  31. [31] T. RUSTEN and R. WINTHER, A preconditioned iterative method for saddle point problems, SIAM J. Matrix Anal. Appl. 13 (1992), 887-904. Zbl0760.65033MR1168084
  32. [32] R. STENBERG, Postprocessing schemes for some mixed finite elements, RAIRO Modèl. Math. Anal. Numér. 25 (1991), 151-167. Zbl0717.65081MR1086845
  33. [33] J. TOUMA and M. VAUCLIN, Experimental and numencal analysis of two phase infiltration in a partially saturated soil, Transport in Porous Media 1 (1986), 27-55. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.