Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls

M. D. Gunzburger; L. S. Hou; Th. P. Svobodny

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 6, page 711-748
  • ISSN: 0764-583X

How to cite

top

Gunzburger, M. D., Hou, L. S., and Svobodny, Th. P.. "Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.6 (1991): 711-748. <http://eudml.org/doc/193646>.

@article{Gunzburger1991,
author = {Gunzburger, M. D., Hou, L. S., Svobodny, Th. P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {control of Dirichlet type; optimal control; stationary Navier-Stokes equations; optimal solutions; Lagrange multiplier techniques; finite element approximations; optimal error estimates},
language = {eng},
number = {6},
pages = {711-748},
publisher = {Dunod},
title = {Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls},
url = {http://eudml.org/doc/193646},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Gunzburger, M. D.
AU - Hou, L. S.
AU - Svobodny, Th. P.
TI - Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 6
SP - 711
EP - 748
LA - eng
KW - control of Dirichlet type; optimal control; stationary Navier-Stokes equations; optimal solutions; Lagrange multiplier techniques; finite element approximations; optimal error estimates
UR - http://eudml.org/doc/193646
ER -

References

top
  1. [1] F. ABERGEL and R. TEMAM, On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynamics. To appear. Zbl0708.76106
  2. [2] R. ADAMS, Sobolev Spaces. Academic, New York, 1975. Zbl0314.46030MR450957
  3. [3] I. BABUŠKA, The finite element method with Lagrange multipliers. Numer. Math. 16 179-192, 1973. Zbl0258.65108MR359352
  4. [4] I. BABUŠKA and A. AZIZ, Survey lectures on the mathematical foundations of the finite element method. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Ed. by A. Aziz), Academic, New York, 3-359, 1973. Zbl0268.65052MR421106
  5. [5] F. BREZZI, On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Model. Math. Anal Numér. 8-32, 129-151, 1974. Zbl0338.90047MR365287
  6. [6] F. BREZZI, A survey of mixed finite element methods. Finite Elements, Theory and Application (Ed. by D. Dwoyer, M. Hussaini and R. Voigt), Springer, New York, 34-49, 1988. Zbl0665.73058MR964479
  7. [7] F. BREZZI, J. RAPPAZ and P.-A. RAVIART, Finite-dimensional approximation of nonlinear problem. Part I : branches of nonsingular solutions. Numer. Math. 36 1-25, 1980. Zbl0488.65021MR595803
  8. [8] L. CATTABRIGA, SU un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 308-340, 1961. Zbl0116.18002MR138894
  9. [9] P. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  10. [10] M. CROUZEIX, Approximation des problèmes faiblement non linéaires. To appear. 
  11. [11] V. GIRAULT and P.-A. RAVIART, Finite Element Methods for Navier-Stokes Equations. Springer, Berlin, 1986. Zbl0585.65077MR851383
  12. [12] M. GUNZBURGER, Finite Element Methods for Incompressible Viscous Flows :A Guide to Theory, Practice and Algorithms. Academic, Boston, 1989. MR1017032
  13. [13] M. GUNZBURGER, L. HOU, Treating inhomogeneous essential boundary conditions in finite element methods. SIAM J. Num. Anal., To appear. Zbl0748.76073MR1154272
  14. [14] M. GUNZBURGER, L. HOU and T. SVOBODNY, Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Opt. Contr., To appear. Zbl0756.49004MR1145711
  15. [15] M. GUNZBURGER, L. HOU and T. SVOBODNY, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls. Math. Comp. 57, 123-151, 1991. Zbl0747.76063MR1079020
  16. [16] L. Hou, Analysis and finite element approximation of some optimal control problems associated with the Navier-Stokes equations. Ph. D. Thesis, Carnegie Mellon University, Pittsburgh, 1989. 
  17. [17] J. LIONS, Some Aspects of the Optimal Control of Distributed Parameter Systems. SIAM, Philadelphia, 1972. Zbl0275.49001
  18. [18] M. SCHECTER, Principles of Functional Analysis. Academic, New York, 1971. Zbl0211.14501MR445263
  19. [19] J. SERRIN, Mathematical principles of classical fluid mechanics. Handbüch der Physik VIII/1 (ed. by S. Flügge and C. Truesdell) Springer, Berlin, 125-263, 1959. MR108116
  20. [20] R. TEMAM, Navier-Stokes Equations. North-Holland, Amsterdam, 1979. Zbl0426.35003MR603444
  21. [21] R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia, 1983. Zbl0833.35110MR764933
  22. [22] R. VERFÜRTH, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50 697-621, 1987. Zbl0596.76031MR884296

Citations in EuDML Documents

top
  1. Frederic Abergel, Eduardo Casas, Some optimal control problems of multistate equations appearing in fluid mechanics
  2. Konstantinos Chrysafinos, Analysis and finite element error estimates for the velocity tracking problem for Stokes flows a penalized formulation
  3. Konstantinos Chrysafinos, Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation
  4. Max D. Gunzburger, Hongchul Kim, Sandro Manservisi, On a shape control problem for the stationary Navier-Stokes equations
  5. S. S. Ravindran, Dirichlet control of unsteady Navier–Stokes type system related to Soret convection by boundary penalty method
  6. Max D. Gunzburger, Hongchul Kim, Sandro Manservisi, On a shape control problem for the stationary Navier-Stokes equations
  7. Konstantinos Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.