Dirichlet control of unsteady Navier–Stokes type system related to Soret convection by boundary penalty method
ESAIM: Control, Optimisation and Calculus of Variations (2014)
- Volume: 20, Issue: 3, page 840-863
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl1098.46001MR450957
- [2] V.K. Andreev and I.I. Ryzhkov, Symmetry classification and exact solutions of the thermal diffusion equations. Differ. Eqs.41 (2005) 538–547. Zbl1087.35077MR2200621
- [3] F. Ben Belgacem, C. Bernardi and H. El Fekih, Dirichlet boundary control for a parabolic equation with final observation: A space-time mixed formulation and penalization. Asympotic Anal.71 (2011) 101–121. Zbl1217.49005MR2752771
- [4] F. Ben Belgacem, H. El Fekih and J.P. Raymond, A penalized approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions. Asymptotic Anal.34 (2003) 121–136. Zbl1043.35014MR1992281
- [5] L. Bergman and M.T. Hyun, Simulation of two dimensional thermosolutal convection in liquid metals induced by horizontal temperature and species gradients. Int. J. Heat Mass Transfer 39 (1996) 2883. Zbl0964.76534
- [6] J.A. Burns, B.B. King and D. Rubio, Feedback control of thermal fluid using state estimation, Flow Control and Optimization. Int. J. Comput. Fluid Dynamics11 (1998) 93–112. Zbl0939.76026MR1682723
- [7] E. Casas and M. Mateos and J.P. Raymond, Penalization of Dirichlet optimal control problems, ESAIM: COCV 15 (2009) 782–809. Zbl1175.49027MR2567245
- [8] H.O. Fattorini and S.S. Sritharan, Existence of optimal controls for viscous flow problems. Proc. Royal Soc. London, Ser. A 439 (1992) 81–102. Zbl0786.76063MR1188854
- [9] A. Fursikov, M.D. Gunzburger and L.S. Hou, Boundary value problems and optimal boundary control for the Navier–Stokes system: the two-dimensional case. SIAM J. Control Optim.36 (1998) 852–894. Zbl0910.76011MR1613873
- [10] M. Gad-el-Hak, A. Pollard and J. P. Bonnet, Flow Control, Fundamentals and Practices. Lect. Notes Phys. Springer, Berlin (1998). Zbl0896.76001
- [11] E. Gagliardo, Proprieta di alcune classi di funzioni in piu variabili. Ricerche. Mat.7 (1958) 102–137 Zbl0089.09401MR102740
- [12] V. Girault and P.A. Raviart, Finite Element Method for Navier–Stokes Equations. Springer, Berlin (1986). Zbl0585.65077MR851383
- [13] M.D. Gunzburger, Flow Control, IMA 68. Springer-Verlag, New York (1995). Zbl0816.00037MR1348639
- [14] M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier–Stokes flows with boundary control. SIAM J. Control Optim.39 (2000) 594–634. Zbl0991.49002MR1788073
- [15] M.D. Gunzburger, L.S. Hou and Th.P. Svobodny, Analysis and finite approximation of optimal control problems for the stationary Navier–Stokes equations with Dirichlet control. Math. Model. Numer. Anal.25 (1990) 711–748. Zbl0737.76045MR1135991
- [16] M. Hinze and K. Kunisch, Second order methods for boundary control of the instationary Navier–Stokes system. Z. Angew. Math. Mech.84 (2004) 171–187. Zbl1042.35047MR2038338
- [17] L.S. Hou and S.S. Ravindran, A Penalized Neumann Control Approach for Solving an Optimal Dirichlet Control Problem for the Navier–Stokes Equations. SIAM J. Control and Optim.36 (1998) 1795–1814. Zbl0917.49003MR1632548
- [18] G. Hellwig, Differential Operators of Mathematical Physics: An Introduction. Addison-Wesley, Reading, MA (1967). Zbl0163.11801MR211292
- [19] D.T.J. Hurle and E. Jakeman, Soret driven thermo-solutal convection. J. Fluid Mech.47 (1971) 667–687.
- [20] K. Ito and S.S. Ravindran, Optimal control of thermally convected fluid flows. SIAM J. Sci. Comput.19 (1998) 1847–1869. Zbl0918.49004MR1638072
- [21] J.L. Lions and E. Magnes, Problemes aux limits Non Homogeneous et Applications, Vol. II. Dunod, Paris (1968). Zbl0165.10801MR247244
- [22] I. Mercader, O. Batiste, A. Alonso and E. Knoblock, Convections, anti-convections and multi-convections in binary fluid convection. J. Fluid Mech.667 (2011) 586–606. Zbl1225.76107
- [23] J. Necas, Les Méthods Directes en Théorie des Équations Elliptiques. Masson et Cie, Paris (1967). Zbl1225.35003MR227584
- [24] L. Nirenberg, On elliptic partial differential equations. Annul. Sc. Norm. Sup. Pisa13 (1959) 116–162. Zbl0088.07601MR109940
- [25] S.S. Ravindran, Convergence of Extrapolated BDF2 Finite Element Schemes For Unsteady Penetrative Convection Model. Numer. Funct. Anal. Opt.33 (2012) 48–79. Zbl1237.76074MR2870491
- [26] V.M. Shevtsova, D.E. Melnikov and J.C. Legros, Onset of convection in Soret-driven instability. Phys. Rev. E 73 (2006) 047302. Zbl1189.76162
- [27] J. Simon, Compact sets in the space Lp(0,T;B) Annali di Matematika Pura ed Applicata (IV) 146 (1987) 65–96. Zbl0629.46031MR916688
- [28] J. Singer and H.H. Bau, Active control of convection. Phys. Fluids A3 (1991) 2859–2865. Zbl0745.76078
- [29] B.L. Smorodin, Convection of a binary mixture under conditions of thermal diffusion and variable temperature gradient. J. Appl. Mech. Tech. Phys.43 (2002) 217–223. Zbl1045.76014
- [30] S.S. Sritharan, Optimal Control of Viscous Flows. SIAM, Philadelphia (1998). Zbl0920.76004MR1632418
- [31] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland (1977). Zbl0568.35002
- [32] G. Yang and N. Zabaras, The adjoint method for an inverse design problem in the directional solidification of binary alloys. J. Comput. Phys.40 (1998) 432–452. Zbl0926.65097MR1616154