On a shape control problem for the stationary Navier-Stokes equations
Max D. Gunzburger; Hongchul Kim; Sandro Manservisi
- Volume: 34, Issue: 6, page 1233-1258
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGunzburger, Max D., Kim, Hongchul, and Manservisi, Sandro. "On a shape control problem for the stationary Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.6 (2000): 1233-1258. <http://eudml.org/doc/194035>.
@article{Gunzburger2000,
author = {Gunzburger, Max D., Kim, Hongchul, Manservisi, Sandro},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stationary Navier-Stokes equations; viscous drag minimization; optimal shape control problem; two-dimensional channel; adjoint method; Lagrangian multiplier method; optimality system; shape gradient},
language = {eng},
number = {6},
pages = {1233-1258},
publisher = {Dunod},
title = {On a shape control problem for the stationary Navier-Stokes equations},
url = {http://eudml.org/doc/194035},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Gunzburger, Max D.
AU - Kim, Hongchul
AU - Manservisi, Sandro
TI - On a shape control problem for the stationary Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 6
SP - 1233
EP - 1258
LA - eng
KW - stationary Navier-Stokes equations; viscous drag minimization; optimal shape control problem; two-dimensional channel; adjoint method; Lagrangian multiplier method; optimality system; shape gradient
UR - http://eudml.org/doc/194035
ER -
References
top- [1] F. Abergel and R. Temam, On some control problems in fluid mechanics. Theor. Comp. Fluid Dyn. 1 (1990) 303-326. Zbl0708.76106
- [2] R. Adams, Sobolev Spaces, Academic Press, New York (1975). Zbl0314.46030MR450957
- [3] V. Alekseev, V. Tikhomirov and S. Fomin, Optimal Control. Consultants Bureau, New York (1987). Zbl0689.49001MR924574
- [4] G. Armugan and O. Pironneau, On the problem of riblets as a drag reduction device. Optimal Control Appl. Methods 10 (1989) 93-112. Zbl0667.49002MR997236
- [5] I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 16 (1973) 179-192. Zbl0258.65108MR359352
- [6] D. Bedivan, Existence of a solution for complete least squares optimal shape problems. Numer. Funct. Anal. Optim. 18 (1997) 495-505. Zbl0895.35042MR1467658
- [7] D. Bedivan and G. Fix, An extension theorem for the space Hdiv. Appl. Math. Lett. (to appear). Zbl0915.46024
- [8] D. Begis and R. Glowinski, Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés. Appl. Math. Optim. 2 (1975) 130-169. Zbl0323.90063MR443372
- [9] D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl 52 (1975) 189-219. Zbl0317.49005MR385666
- [10] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [11] P. Ciarlet, Introduction to Numerical Linear Algebra and Optimization. Cambridge University, Cambridge (1989). Zbl0672.65001MR1015713
- [12] E. Dean, Q. Dinh, R. Glowinski, J. He, T. Pan and J. Periaux, Least squares domain embedding methods for Neumann problems: applications to fluid dynamics, in Domain Decomposition Methods for Partial Differential Equations, D. Keyes et al. Eds., SIAM, Philadelphia (1992). Zbl0768.76045MR1189595
- [13] N. Di Cesare, O. Pironneau and E. Polak, Consistent approximations for an optimal design problem. Report 98005, Labotatoire d'Analyse Numérique, Paris (1998).
- [14] N. Fujii, Lower semi-continuity in domain optimization problems. J. Optim. Theory Appl. 57 (1988) 407-422. Zbl0629.49006MR972916
- [15] V. Girault and R. Raviart, The Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer, New York (1986). Zbl0585.65077MR851383
- [16] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984). Zbl0536.65054MR737005
- [17] R. Glowinski and O. Pironneau, Toward the computation of minimum drag profile in viscous laminar flow. Appl. Math. Model. 1 (1976) 58-66. Zbl0361.76035MR455851
- [18] M. Gunzburger, L. Hou and T. Svobodny, Analysis and finite element approximations of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. RAIRO Modél. Math. Anal. Numér. 25 (1991) 711-748. Zbl0737.76045MR1135991
- [19] M. Gunzburger, L. Hou and T. Svobodny, Optimal control and optimization of viscous, incompressible flow, in Incompressible Computational Fluid Dynamics, M. Gunzburger and R. Nicolaides Eds., Cambridge University, New York (1993) 109-150. Zbl1189.76447
- [20] M. Gunzburger and H. Kim, Existence of a shape control problem for the stationary Navier-Stokes equations. SIAM J. Control Optim. 36 (1998) 895-909. Zbl0917.49004MR1613877
- [21] M. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes equations with distributed control. SIAM J. Numer. Anal. 37 (2000) 1481-1512. Zbl0963.35150MR1759904
- [22] M. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. 37 (1999) 1913-1945. Zbl0938.35118MR1720145
- [23] M. Gunzburger and S. Manservisi, A variational inequality formulation of an inverse elasticity problem. Comput. Methods Appl. Mech. Engrg. 189 (2000) 803-823. Zbl0969.76025MR1755697
- [24] M. Gunzburger and S. Manservisi, Some numerical computations of optimal shapes for Navier-Stokes flows (in préparation). Zbl0963.35150
- [25] J. Haslinger, K.H. Hoffmann and M. Kocvara, Control fictitious domain method for solving optimal shape design problems. RAIRO Modél Math. Anal. Numér. 27 (1993) 157-182. Zbl0772.65043MR1211614
- [26] J. Haslinger and P. Neittaanmaki, Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd edn. Wiley, Chichester (1996). Zbl0845.73001MR1419500
- [27] K. Kunisch and G. Pensil, Shape optimization for mixed boundary value problems based on an embedding domain method (to appear). Zbl0914.49027
- [28] O. Pironneau, Optimal Shape Design in Fluid Mechanics. Thesis, University of Paris, France (1976).
- [29] O. Pironneau, On optimal design in fluid mechanics. J. Fluid. Mech. 64 (1974) 97-110. Zbl0281.76020MR347229
- [30] O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984). Zbl0534.49001MR725856
- [31] R. Showalter, Hilbert Space Methods for Partial Differential Equations. Electron. J. Differential Equations (1994) http://ejde.math.swt.edu/mono-toc.html Zbl0991.35001MR1302484
- [32] J. Simon, Domain variation for Stokes fiow, in Lecture Notes in Control and Inform. Sci. 159, X. Li and J. Yang Eds., Springer, Berlin (1990) 28-42. Zbl0801.76075MR1129956
- [33] J. Simon, Domain variation for drag Stokes flows, in Lecture notes in Control and Inform. Sci.114, A. Bermudez Ed., Springer, Berlin (1987) 277-283. Zbl0801.76075
- [34] T. Slawig, Domain Optimization for the Stationary Stokes and Navier-Stokes Equations by Embedding Domain Technique. Thesis, TU Berlin, Berlin (1998). Zbl0935.49020
- [35] J. Sokolowski and J. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Berlin (1992). Zbl0761.73003MR1215733
- [36] S. Stojanovic, Non-smooth analysis and shape optimization in flow problems. IMA Preprint Series 1046, IMA, Minneapolis (1992).
- [37] R. Temam, Navier-Stokes equation. North-Holland, Amsterdam (1979). Zbl0426.35003
- [38] R. Temam, Navier-Stokes equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1993). Zbl0833.35110MR1318914
- [39] V. Tikhomirov, Fundamental Principles of the Theory of Extremal Problems. Wiley, Chichester (1986). Zbl0595.49001MR866483
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.