L’élément Q 1 -bulle/ Q 1

P. Mons; G. Rogé

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 4, page 507-521
  • ISSN: 0764-583X

How to cite

top

Mons, P., and Rogé, G.. "L’élément $Q_1$-bulle/$Q_1$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.4 (1992): 507-521. <http://eudml.org/doc/193674>.

@article{Mons1992,
author = {Mons, P., Rogé, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {/bubble- element; Arnold-Brezzi-Fortin's mini-element; finite element; Stokes flow},
language = {fre},
number = {4},
pages = {507-521},
publisher = {Dunod},
title = {L’élément $Q_1$-bulle/$Q_1$},
url = {http://eudml.org/doc/193674},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Mons, P.
AU - Rogé, G.
TI - L’élément $Q_1$-bulle/$Q_1$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 4
SP - 507
EP - 521
LA - fre
KW - /bubble- element; Arnold-Brezzi-Fortin's mini-element; finite element; Stokes flow
UR - http://eudml.org/doc/193674
ER -

References

top
  1. [A] D. ARNOLD, F. BREZZI, M. FORTIN, A stable finite element for the Stokes equations, Calcolo, 21 (4), 337-344, 1984. Zbl0593.76039MR799997
  2. [BA] R. BANK, B. WELFERT, A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem, private communication, 1989. Zbl0732.65100MR1078695
  3. [BR] F. BREZZI, On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, RAIRO, Modél. Math. Anal. Numér., R2, 129-151, 1974. Zbl0338.90047MR365287
  4. [BE] C. BERNARDI, Optimal finite element interpolation on curved domains, SIAM J. Numer. AnaL, Vol. 26, N° 5, pp. 1212-1240, 1989. Zbl0678.65003MR1014883
  5. [C] P. CLÉMENT, Approximation by finite element functions using local regularization, RAIRO, Model. Math. Anal. Numér., 9 R2, 33-76, 1975. Zbl0368.65008MR400739
  6. [F] M. FORTIN,, An analysis of the convergence of mixed finite elements methods, RAIRO, Modél. Math. Anal. Numér., 11 R3, 341-354, 1977. Zbl0373.65055MR464543
  7. [GI] V. GIRAULT, P. A. RAVIART, Finite element approximation on the Navier-Stokes equations, Lecture Notes in Math., Springer-Verlag, 1981. Zbl0441.65081MR548867
  8. [GP] R. GLOWINSKI, O. PIRONNEAU, On a mixed finite element approximation of the Stokes problem (I). Convergence of the approximate solutions. IRIA-Laboria, Numer. Math., Fev. 1979. Zbl0423.65059MR553350
  9. [T] G. TAYLOR et P. HOOD, A numerical solution of the Navier-Stokes equation using the finite element technique, Comput. and Fluids, vol. 1, N° 1, pp. 73-100. Zbl0328.76020MR339677

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.