Stabilization methods of bubble type for the Q 1 / Q 1 -element applied to the incompressible Navier-Stokes equations

Petr Knobloch; Lutz Tobiska

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 1, page 85-107
  • ISSN: 0764-583X

How to cite

top

Knobloch, Petr, and Tobiska, Lutz. "Stabilization methods of bubble type for the $Q_1/Q_1$-element applied to the incompressible Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 85-107. <http://eudml.org/doc/193982>.

@article{Knobloch2000,
author = {Knobloch, Petr, Tobiska, Lutz},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stabilized quadilateral element; incompressible Navier-Stokes equations},
language = {eng},
number = {1},
pages = {85-107},
publisher = {Dunod},
title = {Stabilization methods of bubble type for the $Q_1/Q_1$-element applied to the incompressible Navier-Stokes equations},
url = {http://eudml.org/doc/193982},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Knobloch, Petr
AU - Tobiska, Lutz
TI - Stabilization methods of bubble type for the $Q_1/Q_1$-element applied to the incompressible Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 85
EP - 107
LA - eng
KW - stabilized quadilateral element; incompressible Navier-Stokes equations
UR - http://eudml.org/doc/193982
ER -

References

top
  1. [1] D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. Zbl0593.76039MR799997
  2. [2] C. Baiocchi, F. Brezzi and L.P. Franca, Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.). Comput. Methods Appl. Mech. Eng. 105 (1993) 125-141. Zbl0772.76033MR1222297
  3. [3] R.E. Bank and B.D. Welfert, A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 83 (1990) 61-68. Zbl0732.65100MR1078695
  4. [4] M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211-224. Zbl0423.65058MR549450
  5. [5] C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 71-79. Zbl0563.65075MR771031
  6. [6] F. Brezzi, M.-O. Bristeau, L.P. Franca, M. Mallet and G. Rogé, A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96 (1992) 117-129. Zbl0756.76044MR1159592
  7. [7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
  8. [8] F. Brezzi, L.P. Franca and A. Russo, Further considerations on residual-free bubbles for advective-diffusive equations. Technical Report UCD/CCM 113, Univerity of Colorado at Denver, Center for Computational Mathematics (1997). Zbl0934.65126MR1660137
  9. [9] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient Solutions of Elliptic Systems, W. Hackbusch Ed., Notes on Numerical Fluid Méchantes 10 Vieweg-Verlag Braunschweig (1984) 11-19. Zbl0552.76002MR804083
  10. [10] M. Fortin, Old and new finite éléments for incompressible flows. Int. J. Numer. Methods Fluids 1 (1981) 347-364. Zbl0467.76030MR633812
  11. [11] L.P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 123 (1995) 299-308. Zbl1067.76567MR1339376
  12. [12] L.P. Franca and S.L. Frey, Stabilized finite element methods. II: The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99 (1992) 209-233. Zbl0765.76048MR1186727
  13. [13] L.P. Franca and A. Russo, Approximation of the Stokes problem by residual-free macro bubbles, East-West J. Numer. Math. 4 (1996) 265-278. Zbl0869.76038MR1430240
  14. [14] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin (1986). Zbl0585.65077MR851383
  15. [15] T.J. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics. V: Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59 (1986) 85-99. Zbl0622.76077MR868143
  16. [16] P. Knobloch, Reduced finite element discretizations of the Stokes and Navier-Stokes equations. J. Math. Fluid Mechanics (to appear). Zbl1088.76026MR2212290
  17. [17] P. Mons and G. Rogé, L'élément Q1-bulle/Q1. Math. Mod. Numer. Anal. 26 (1992) 507-521. Zbl0760.65100MR1163979
  18. [18] R. Pierre, Simple C0 approximations for the computation of incompressible flows. Comput. Methods Appl. Mech. Eng. 68 (1988) 205-227. Zbl0628.76040MR942313
  19. [19] T.C. Rebollo, A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math, 79 (1998) 283-319. Zbl0910.76033MR1622522
  20. [20] A. Russo, Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 132 (1996) 335-343. Zbl0887.76038MR1399021
  21. [21] L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 107-127. Zbl0843.76052MR1377246
  22. [22] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175-182. Zbl0557.76037MR743884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.