Stabilization methods of bubble type for the -element applied to the incompressible Navier-Stokes equations
- Volume: 34, Issue: 1, page 85-107
- ISSN: 0764-583X
Access Full Article
topHow to cite
topKnobloch, Petr, and Tobiska, Lutz. "Stabilization methods of bubble type for the $Q_1/Q_1$-element applied to the incompressible Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 85-107. <http://eudml.org/doc/193982>.
@article{Knobloch2000,
author = {Knobloch, Petr, Tobiska, Lutz},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stabilized quadilateral element; incompressible Navier-Stokes equations},
language = {eng},
number = {1},
pages = {85-107},
publisher = {Dunod},
title = {Stabilization methods of bubble type for the $Q_1/Q_1$-element applied to the incompressible Navier-Stokes equations},
url = {http://eudml.org/doc/193982},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Knobloch, Petr
AU - Tobiska, Lutz
TI - Stabilization methods of bubble type for the $Q_1/Q_1$-element applied to the incompressible Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 85
EP - 107
LA - eng
KW - stabilized quadilateral element; incompressible Navier-Stokes equations
UR - http://eudml.org/doc/193982
ER -
References
top- [1] D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. Zbl0593.76039MR799997
- [2] C. Baiocchi, F. Brezzi and L.P. Franca, Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.). Comput. Methods Appl. Mech. Eng. 105 (1993) 125-141. Zbl0772.76033MR1222297
- [3] R.E. Bank and B.D. Welfert, A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 83 (1990) 61-68. Zbl0732.65100MR1078695
- [4] M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211-224. Zbl0423.65058MR549450
- [5] C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 71-79. Zbl0563.65075MR771031
- [6] F. Brezzi, M.-O. Bristeau, L.P. Franca, M. Mallet and G. Rogé, A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96 (1992) 117-129. Zbl0756.76044MR1159592
- [7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
- [8] F. Brezzi, L.P. Franca and A. Russo, Further considerations on residual-free bubbles for advective-diffusive equations. Technical Report UCD/CCM 113, Univerity of Colorado at Denver, Center for Computational Mathematics (1997). Zbl0934.65126MR1660137
- [9] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient Solutions of Elliptic Systems, W. Hackbusch Ed., Notes on Numerical Fluid Méchantes 10 Vieweg-Verlag Braunschweig (1984) 11-19. Zbl0552.76002MR804083
- [10] M. Fortin, Old and new finite éléments for incompressible flows. Int. J. Numer. Methods Fluids 1 (1981) 347-364. Zbl0467.76030MR633812
- [11] L.P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 123 (1995) 299-308. Zbl1067.76567MR1339376
- [12] L.P. Franca and S.L. Frey, Stabilized finite element methods. II: The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99 (1992) 209-233. Zbl0765.76048MR1186727
- [13] L.P. Franca and A. Russo, Approximation of the Stokes problem by residual-free macro bubbles, East-West J. Numer. Math. 4 (1996) 265-278. Zbl0869.76038MR1430240
- [14] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin (1986). Zbl0585.65077MR851383
- [15] T.J. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics. V: Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59 (1986) 85-99. Zbl0622.76077MR868143
- [16] P. Knobloch, Reduced finite element discretizations of the Stokes and Navier-Stokes equations. J. Math. Fluid Mechanics (to appear). Zbl1088.76026MR2212290
- [17] P. Mons and G. Rogé, L'élément Q1-bulle/Q1. Math. Mod. Numer. Anal. 26 (1992) 507-521. Zbl0760.65100MR1163979
- [18] R. Pierre, Simple C0 approximations for the computation of incompressible flows. Comput. Methods Appl. Mech. Eng. 68 (1988) 205-227. Zbl0628.76040MR942313
- [19] T.C. Rebollo, A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math, 79 (1998) 283-319. Zbl0910.76033MR1622522
- [20] A. Russo, Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 132 (1996) 335-343. Zbl0887.76038MR1399021
- [21] L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 107-127. Zbl0843.76052MR1377246
- [22] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175-182. Zbl0557.76037MR743884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.