Finite element computation of hyperelastic rods in large displacements

P. Le Tallec; S. Mani; F. A. Rochinha

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 5, page 595-625
  • ISSN: 0764-583X

How to cite

top

Le Tallec, P., Mani, S., and Rochinha, F. A.. "Finite element computation of hyperelastic rods in large displacements." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.5 (1992): 595-625. <http://eudml.org/doc/193678>.

@article{LeTallec1992,
author = {Le Tallec, P., Mani, S., Rochinha, F. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {traction; flexion; torsion; orthogonal directors; Newton's type procedure},
language = {eng},
number = {5},
pages = {595-625},
publisher = {Dunod},
title = {Finite element computation of hyperelastic rods in large displacements},
url = {http://eudml.org/doc/193678},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Le Tallec, P.
AU - Mani, S.
AU - Rochinha, F. A.
TI - Finite element computation of hyperelastic rods in large displacements
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 5
SP - 595
EP - 625
LA - eng
KW - traction; flexion; torsion; orthogonal directors; Newton's type procedure
UR - http://eudml.org/doc/193678
ER -

References

top
  1. [1] S. S. ANTMAN, Ordinary Differential Equations of One Dimensional Elasticity, Arch. Rat. Mech. Anal., 61, 1976, pp. 307-393. Zbl0354.73046MR418580
  2. [2] S. S. ANTMAN, C. S. KENNEY, Large Buckled States of Nonlinear Elastic Rods under Torsion, Thrust and Gravity, Arch. Rat. Mech. Anal., 76, 1981, pp. 289-338. Zbl0472.73036MR628172
  3. [3] J. SIMO, A Finite Stram Beam Formulation The Three-dimensional Dynamic Problem, Part 1, Comp. Meth. Appl. Mech. Eng., 49, 1985, pp. 55-70. Zbl0583.73037
  4. [4] J. F. BOURGAT, P. LE TALLEC, S. MANI, Modélisation et Calcul des Grands Déplacements de Tuyaux Elastiques en Flexion Torsion, J. Méc.Théor. Appl., 7, 1988, pp. 1-30. Zbl0671.73060MR959482
  5. [5] T. DUPONT, R. SCOTT, Polynomial Approximation of Functions in Sobolev spaces, Math. Comp., 34, 1980, pp. 441-463. Zbl0423.65009MR559195
  6. [6] H. KELLER, The bordering algorithm and path following near singular points of higher nullity, SIAM J. Sci. Stat. Comp., 4, 1983, pp. 573-582. Zbl0536.65017MR725653
  7. [7] T. J. R. HUGHES, J. WINGET, Finite Rotation Effects in Numerical Intégration of Rate Constitutive Equations Arising in Large Deformation Analysis, Int. J. Numer. Meth. Eng., 15, 1980, pp. 1413-1418. Zbl0463.73081MR601532
  8. [8] J. C. SIMO, L. VU QUOC, A Three-dimensional Finite Stram Rod Model Part II Computational Aspects, Comp. Meth. Appl. Mech. Engrg., 58, 1986, pp. 79-116. Zbl0608.73070
  9. [9] K. E. BISSHOP, D. E. DRUCKER, Large Deflections of Cantilever Beams, Quart. Appl. Math., 3, 1945, pp. 272-275. Zbl0063.00418MR13360

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.